Выбрать главу

§ 2. Тепловое равновесие излучения

§ 3. Равномерное распределение и квантовый осциллятор

§ 4. Случайные блуждания

§ 1. Равнораспределение энергии

Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достаточно сведущ, чтобы понимать, что перед ним не живые существа, а просто плавающие в воде сорин­ки. Чтобы окончательно доказать, что это не живые существа, Броун разыскал обло­мок кварца, внутри которого была заполнен­ная водой полость. Вода попала туда много миллионов лет назад, но и в такой воде со­ринки все продолжали свою пляску. Казалось, что очень мелкие частицы пляшут непрерывно. Позднее было доказано, что это один из эффектов молекулярного движения и понять его качественно можно, представив себе, что мы откуда-то издалека следим за игрой в пуш­бол. Мы знаем, что под большим мячом дви­жется толпа людей и каждый толкает мяч, куда хочет. Мы не видим отдельных игроков, потому что поле очень далеко от нас, но мяч мы видим и замечаем, что перемещается он очень беспорядочно. Мы уже знаем из разоб­ранных в предыдущих главах теорем, что средняя кинетическая энергия взвешенной в газе или жидкости маленькой частицы равна 3/2kT, даже если эта частица гораздо тяжелее молекул газа. Если она очень тяжела, то и движется она сравнительно медленно, но на самом деле оказывается, что скорость частицы не так уж мала. Конечно, заметить движение частицы не очень легко, потому что средняя кинетическая энергия 3/2kT соответствует ско­рости около 1 мм/сек, если диаметр частицы равен 1 —2 мк. Такое движение трудно заметить даже под микроскопом, потому что частица постоянно меняет направление своего движения и пойти в какую-нибудь определенную сто­рону не желает. В конце главы мы посмотрим, далеко ли она может уйти. Этот вопрос впервые был разрешен Эйнштейном в начале нашего столетия.

Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное — что удается полу­чить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона — это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много по­лучить? Просто мы постоянно исходили из очень важного пред­положения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется пос­мотреть, как движется частица, если она сталкивается с водой.

Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаи­модействуют и только сильно ударяют по нашей частице. Пред­положим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все — это иде­альный газ. Вода — дело сложное, а идеальный газ — он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы долж­но быть таким, каким ему следует быть вследствие столкнове­ний с атомами, потому что если бы частица двигалась относи­тельно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и ос­танется; не может вдруг одна часть системы нагреться, а дру­гая остыть.

Фиг. 41.1. Чувствитель­ный зеркальный гальва­нометр и образец записи шкалы как функция вре­мени.

Пучок света из источника L отражается от малень­кого зеркальца на шкале.

Это предположение справедливо и его можно доказать, ис­пользуя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.

Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в дру­гих условиях, позволяющих обнаружить броуновское движе­ние. Если бы мы смогли соорудить чрезвычайно тонкое измери­тельное устройство, скажем, крохотное зеркальце, прикреплен­ное к тонкой кварцевой нити очень чувствительного баллисти­ческого гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пят­ном, то потеряли бы надежду создать совершенный измеритель­ный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркаль­ца равна ll2kT.

Чему равен средний квадратичный угол качаний зеркаль­ца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции /. Формулу для кинети­ческой энергии вращения мы знаем, это равенство (19.8): Т =1/2Iw2. А потенциальная энергия пропорциональна квад­рату угла отклонения, т. е. V = l/2aq2. Но если мы знаем пе­риод колебаний t0и можем вычислить собственную частоту w0= 2p/t0, то можно и потенциальную энергию записать в виде V=1/2/Iw20q2. Мы знаем, что средняя кинетическая энергия равна l/2 kT', но поскольку перед нами гармонический осцил­лятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,

Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего ин­струмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварце­вая нить, то охлаждать нужно ее верхний конец, если же зер­кальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затуха­ние колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.

Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы пост­роили очень чувствительный, точный усилитель для какой-ни­будь определенной частоты и к его входу подключили резо­нансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.