Выбрать главу

Окончательный результат для средней скорости излучения света вблизи частоты w0 таков:

Теперь надо выяснить, сильно ли должен быть освещен ос­циллятор. Освещение должно быть таким, чтобы поглощен­ная осциллятором энергия (и впоследствии рассеянная) была в точности равна предыдущей величине. Иначе говоря, излучен­ный свет — это свет, рассеянный при освещении осциллятором в полости. Итак, нам остается рассчитать, сколько света рас­сеивается осциллятором, если на него падает какая-то — неиз­вестная — доза излучения. Пусть I(w)dw— энергия света час­тоты w в интервале частот dw(ведь у нас нет света точно задан­ной частоты; излучение распределено по спектру). Таким образом, I(w) — это спектральное распределение, которое нам надо найти. Это тот цвет огня, который мы увидим внутри печи при температуре Т, если откроем дверцу и заглянем внутрь.

Сколько же все-таки света поглотится? Мы уже определяли количество излучения, поглощаемого из заданного падающего пучка света, и выразили его через эффективное сечение. Это соответствует тому, как если бы мы предполагали, что весь свет, падающий на площадку определенной площади, погло­щается. Таким образом, полная переизлученная (рассеянная) интенсивность равна произведению интенсивности падающего света I(w)dw на эффективное сечение а.

Мы вывели формулу для эффективного сечения [см. уравне­ние (31.19)1, не включающую затухания. Нетрудно повторить этот вывод снова и учесть трение, которым мы тогда пренебре­гли. Если это сделать, то, вычисляя эффективное сечение по прежнему образцу, мы получим

Пойдем дальше; ssкак функция частоты имеет более или менее заметную величину только для w около собственной час­тоты w0. (Вспомним, что для излучающего осциллятора Q — порядка 108.) Когда со равна w0, осциллятор рассеивает очень сильно, а при других значениях w он почти не рассеивает сов­сем. Поэтому можно заменить w на w0, а w2-w20 на 2w0(w-w0); тогда

Теперь почти вся кривая загнана в область около w=w0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное вы­ражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dw. Полная рассеянная энергия — это интеграл по всем w. Таким образом,

Теперь мы положим dWs/dt=3gkT. Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы исполь­зовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направле­ниям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор пос­лушно следует за полем, каким бы оно ни было там, где он на­ходится. Такой осциллятор, который одинаково легко раска­чивается в любом из трех направлений, имеет среднюю энергию 3kT, потому что у него 3 степени свободы. А раз 3 степени сво­боды, то надо писать 3gkT.

Займемся теперь интегралом. Предположим, что неизвест­ное спектральное распределение света I(w) — это плавная кри­вая, которая в той узкой области частот, где ss имеет острый максимум, меняется не слишком сильно (фиг. 41.3).

Фиг. 41.3. Сомножители подын­тегрального выражения (41.10).

Пик — это резонансная кривая 1/[(w-w 0 ) 2 +(g 2 /4)]. Множитель I(w) можно с хорошим приближением за­менить на I(w 0 ).

Тогда сколь­ко-нибудь существенный вклад в интеграл дают только частоты, близкие к w0 и отстоящие от нее на очень малую величину g. Поэтому, хотя I(w) неизвестная и, может быть, сложная функ­ция, важно только ее поведение около w=w0 и можно заменить плавную кривую еще более ровной — «постоянной» — всюду одной высоты. Иначе говоря, мы просто вынесем I(w) из-под знака интеграла и назовем это I(w0). Вынесем за интеграл и остальные постоянные и тогда получим

Интеграл берется от 0 до Ґ, но 0 отстоит так далеко от w0, что кривая за это время идет почти вдоль оси абсцисс, поэтому заменим 0 на -Ґ, разница небольшая, а интеграл взять легче.

Интеграл вида ∫dx/(x22) приводит к арктангенсу. Если

взглянуть в справочник, то мы увидим, что он равен я/а. Итак, для нашего случая это 2p/g. После небольших манипуляций мы получаем

Затем мы подставим сюда формулу (41.6) для у (мы уже не будем стараться писать w0; раз это верно для любой w0, то можно назвать ее просто w), и формула для I(w) примет вид

I(w)=w2kT/p2c2. (41.13)

Она и определяет распределение света в горячей печке. Это так называемое излучение абсолютно черного тела. Черного по­тому, что, если заглянуть в топку печки при абсолютном нуле, она будет черной.

Формула (41.13) задает распределение энергии излучения внутри ящика при температуре Т согласно классической тео­рии. Отметим сначала замечательную особенность этого выра­жения. Заряд осциллятора, масса осциллятора, все частные его свойства выпали из формулы; ведь если мы достигли рав­новесия с одним осциллятором, мы должны позаботиться о равновесии и с любым другим осциллятором другой массы, иначе будут неприятности. Таким образом, это важный способ проверки нашей теоремы о том, что равновесие зависит только от температуры, а не от того, что приводит к равновесию. Те­перь можно начертить кривую I(w) (фиг. 41.4).

Фиг. 41.4. Распределение интен­сивности излучения черного тела при двух температурах.

Сплошные кривые — согласно классиче­ской теории; пунктирные — настоящее распределение, 1— paдuo ; 2 — инфракрасное; 3 — видимое; 4 — ультрафио­летовое; 5 — рентгеновские лучи.

Она покажет нам, какова освещенность при разных частотах.

В выражение для интенсивности в ящике на единицу частоты входит, как видно, квадрат частоты; это значит, что если взять ящик при любой температуре, то в нем обнаружится бездна рентгеновских лучей!

Мы знаем, конечно, что это неверно. Когда мы открываем печку и заглядываем в нее, мы не портим глаз рентгеновскими лучами. Дальше — хуже, полная, энергия, ящика, полная ин­тенсивность, просуммированная по всем частотам, должна быть площадью под этой уходящей в бесконечность кривой. Итак, здесь что-то совсем неверно в самой основе.

Это значит, что классическая теория совершенно непригодна для правильного описания распределения излучения черного тела, так же как и для описания теплоемкостей газов. Физики ходили вокруг этого вывода, рассматривали его с различных точек зрения и не нашли выхода. Это предсказание классической физики. Уравнение (41.13) называется законом Рэлея, предска­зано оно классической физикой и до очевидности абсурдно.

§ 3. Равномерное распределение и квантовый осциллятор

Только что отмеченная трудность — это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распределении света в черном теле. Конечно, пока теоретики обсуждали эти вещи, производились еще и измерения настоящих кривых. И было установлено, что правильная кривая выглядит так, как пунктирные кривые на фиг. 41.4. Никаких рентгеновских лучей там нет. Если пони­жать температуру, то кривые приближаются, к оси абсцисс примерно так, как того требует классическая теория, но и при низкой температуре опытные кривые тоже в конце обрываются.