Выбрать главу

Таким образом, начало кривой распределения правильно описывает опыт, а ее высокочастотный конец сбивается с вер­ного пути. Почему же так? Когда Джеймс Джинс размыш­лял о теплоемкостях газов, он заметил, что движение, совер­шаемое с большой частотой, «замерзает» при понижении тем­пературы. Значит осциллятор не может обладать средней энер­гией kT, если температура слишком мала или если частота колебаний слишком велика. А теперь вспомним, как мы выво­дили (41.13). Все зависело от энергии осциллятора при тепло­вом равновесии. Когда мы подставляли kT в (41.5), это было то же kT, что и в (41.13), т. е. средняя энергия гармонического осциллятора частоты w при температуре Т. Классическая фи­зика говорит, что она равна kT, а эксперимент отвечает: Нет! При очень низких температурах или при очень высоких час­тотах это не так. Таким образом, кривая падает по той же причине, что и теплоемкости газов. Кривую черного тела изу­чать легче, чем теплоемкости газов, где много сложностей, и мы сконцентрируем внимание на определении правиль­ной кривой излучения черного тела, потому что эта кривая будет той кривой, которая расскажет нам, как средняя энергия гармонического осциллятора при любой его частоте зависит от температуры.

За изучение этой кривой взялся Планк. Сначала он нашел чисто эмпирический ответ, сравнивая опытную кривую с из­вестными функциями, которые лучше всего эту кривую подгоняли. Таким образом, он получил эмпирическую формулу для средней энергии гармонического осциллятора как функцию температуры. Иначе говоря, он заменил kT правильной фор­мулой, а потом нашел простой вывод этой формулы, правда, при очень странном предположении. Это предположение со­стоит в том, что гармонический осциллятор может поглотить за один прием только энергию hw. После этого нельзя и подумать, что осциллятор может обладать любой энергией. Конечно, это было началом конца классической физики.

Сейчас мы выведем первую правильную формулу квантовой механики. Предположим, что дозволенные уровни энергии гармонического осциллятора лежат на равном расстоянии hw0 друг от друга, поэтому осциллятор может обладать только одной из этих энергий (фиг. 41.5).

Фиг. 41.5, Уровни энергии гар­монического осциллятора.

Отстоят друг от друга но равных рас­стояниям E n =nhw.

Аргументы Планка выглядят немного сложнее наших, ведь это было самым началом кванто­вой механики, и ему приходилось кое-что доказывать. Ну, а мы просто примем как факт (который Планк и установил), что вероятность того, что занят уровень энергии Е, равна Р(Е)=aехр(-E/kT). Исходя из этого, мы получим правильный результат.

Предположим, что у нас есть много осцилляторов и каждый колеблется с частотой w0. Некоторые из них находятся в низ­шем квантовом состоянии, другие забрались на уровень выше и т. д. Нам нужно знать среднюю энергию этих осцилля­торов. Чтобы найти ее, давайте вычислим полную энергию всех осцилляторов и поделим результат на их число. Тогда мы получим среднюю энергию на осциллятор при тепловом равновесии, а это то же самое, что и энергия при равновесии с излучением черного тела, и ее надо подставить в уравнение. (41.13) вместо kT.

Пусть N0число осцилляторов в основном состоянии (состоянии с наименьшей энергией), N1число осцилляторов в состоянии Е1, n2— число осцилляторов в состоянии E2и т. д. Согласно гипотезе (которую мы не доказали), классические выражения для вероятности ехр(-п. э./kT) или ехр(-к. э./kT) заменяются в квантовой механике на ехр(-DE/kT), где DE — разность энергий, Можно утверждать, что число осцилляторов в первом состоянии N1равно произведению числа молекул в основном состоянии N0на ехр(-hw/kT). Аналогично, n2(число молекул во втором состоянии) равно N2=N0exp(-2hw/kT). Чтобы упростить алгебру, введем х=ехр(-hw/kT). Тогда все выглядит очень просто:

N1=N0x, N2=N0x2 ..., Nn=N0xn.

Сначала найдем полную энергию всех осцилляторов. Если осциллятор находится в основном состоянии, его энергия нуль. Если он находится в первом состоянии, то его энергия равна hw0, а таких осцилляторов N1. Значит, в этом состоянии запасена энергия N1hw, или hwN0x. Энергия осцил­лятора во втором состоянии 2hw0, а осцилляторов N2, поэтому мы получаем такую энергию: N22hw=2hw0N0x2 и т. д. Сложив все это, найдем полную энергию Eполн=N0hw (0+х+2х2+Зx3+...). А сколько всего осцилляторов? В основном состоянии, ко­нечно, N0, в первом состоянии Nlи т. д.; снова все сложим и получим Nвcе=N0(1+x+x2+x3+...). Поэтому средняя энергия равна

Читателям представляется возможность позабавиться этими суммами и получить от этого удовольствие. Когда вы покон­чите с суммированием и подставите в окончательный результат значение х, то получите, если не ошиблись

Эта формула была не только самой первой формулой, но и самой первой мыслью квантовой механики, и она явилась великолепным ответом на все недоумения предшествующих десятилетий. Максвелл уже понимал, что что-то неверно, но вопрос был в том, что же правильно? Здесь содержится коли­чественный ответ — что же надо взять вместо kT. Выражение для энергии, конечно, стремится к kT при w®0 или при Т®Ґ. Попробуйте это доказать — здесь надо поступить так, как этому учит математика.

Выражение для средней энергии содержит знаменитый обрезающий множитель, который предвидел Джине, и если использовать его вместо kT в (41.13), то мы получим распре­деление света в черном ящике:

Итак, мы видим, что при больших w кривая резко идет вниз; хотя в числителе стоит w3, знаменатель содержит е в чрезвы­чайно высокой степени; на кривой нет никакого намека на подъем, и там, где мы того не ждем, не появляется ни ультра­фиолетовых, ни рентгеновских лучей!

Может возникнуть недовольство в связи с тем, что при вы­воде (41.16) мы пользовались квантовой теорией для уровней энергии гармонического осциллятора, а при определении эф­фективного сечения ssмы оставались верны классической тео­рии. Но квантовая теория взаимодействия света с гармониче­ским осциллятором приводит точно к тем же результатам, что и классическая. Это обстоятельство оправдывает то время, которое мы затратили на изучение показателя преломления и рассеяние света, основанное на представлении об атоме как о маленьком осцилляторе, — квантовые формулы получаются точно такими же.