Выбрать главу

Заметим, что произведение площади каждой молекулы на тол­щину слоя приблизительно равно объему Va, отведенному каж­дой молекуле. Итак, для получения равновесия мы должны иметь Nc=Ne, или

Можно выкинуть из этого равенства скорости, потому что они равны; если даже специально отметить, что одна из них — скорость молекулы пара, а другая — скорость испаряющейся молекулы, — все равно они одинаковы, ведь мы знаем, что средняя кинетическая энергия обеих молекул (в одном на­правлении) равна 1/2kT. Но можно сказать: «Нет! Нет! Ведь испаряются только особо быстрые молекулы. Только они приобрели достаточный избыток энергии». Не совсем так, потому что в тот момент, когда эти молекулы выскакивают из жидкости, они теряют этот избыток, преодолевая потенциаль­ную энергию. Поэтому при подходе к поверхности они уже движутся с замедленной скоростью v! Точно так же обстояло дело с распределением молекулярных скоростей в атмосфере — в нижних слоях молекулы были определенным образом рас­пределены по энергиям. Те из них, которые достигали более высоких слоев, распределялись по энергиям точно так же, потому что медленные молекулы вверх совсем не поднимались, а быстрые, поднявшись, двигались медленнее. Испаряющиеся молекулы распределены по скоростям так же, как молекулы, движущиеся в глубине жидкости — поистине поразительный факт. Во всяком случае, нет смысла пытаться столь строго обсуждать нашу формулу, потому что в ней есть и дру­гие неточности; например, мы рассматривали вероятность отражения молекул от поверхности, а не их конденсации и т. д. Мы имеем дело лишь с грубым описанием скорости испарения и конденсации и видим, естественно, что плотность пара nизменяется так же, как и раньше, но теперь мы понимаем этот процесс много лучше, а раньше писали почти произволь­ную формулу.

Более глубокое понимание позволит нам выяснить еще кое-что. Например, предположим, что мы откачиваем пар, причем так быстро, что пар удаляется практически с той же быстротой, с какой образуется (если наш насос очень хороший, а испа­рение происходит медленно). С какой скоростью будет про­исходить испарение, если температура жидкости Т будет под­держиваться постоянной? Предположим, что мы эксперимен­тально уже измерили равновесную плотность пара и нам известно, сколько молекул в единице объема может быть в равновесии с жидкостью при заданной температуре. Теперь мы хотим узнать скорость испарения жидкости. Хотя мы ограничились лишь грубым анализом испарения, он все же дал нам сведения о числе прибывающих молекул пара, правда, с точностью до неизвестного коэффициента отражения. Поэтому мы можем использовать то обстоятельство, что при равновесии число покидающих пар молекул равно числу прибывающих молекул. Правда, пар откачивается и молекулы могут только покидать жидкость, но если оставить пар в покое, то устано­вится равновесная плотность, при которой число прибывающих в жидкость молекул равно числу испаряющихся. Следова­тельно, легко видеть, что в этом случае число молекул, поки­дающих поверхность жидкости за 1 сек, равно произведению неизвестного коэффициента отражения R на число молекул, которые ежесекундно возвращались бы в жидкость, если бы пар не откачивался, потому что именно это число входит в уравнение баланса для испарения при равновесии:

Ne=nvR=(vR/Va)e-W/kT(42.5)

Конечно, легче подсчитать число молекул, переходящих из пара в жидкость, потому что в этом случае не надо ничего предполагать о силах, как это приходилось делать при подсчете числа покидающих жидкость молекул. Проще изменить путь рассуждений.

§ 2. Термоиониая эмиссия

Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой радиолампе есть источник электронов — вольфрамовая нить накаливания и положительно заряженная пластинка, притягивающая электроны. Оторвавшийся с по­верхности вольфрама электрон немедленно улетает к пластинке. Это — «идеальный» насос, который непрерывно «откачивает» электроны. Возникает вопрос: сколько электронов ежесекундно покидает вольфрамовую проволоку и как их число зависит от температуры? Решение задачи дается той же формулой (42.5), потому что электроны, находящиеся в куске металла, при­тягиваются ионами или атомами металла. Они, грубо го­воря, притягиваются металлом. Чтобы оторвать электрон от металла, надо сообщить ему определенное количество энер­гии, т. е. затратить для этого работу. Эта работа для разных металлов различна. Фактически она изменяется даже в зави­симости от вида поверхности у одного и того же металла, но в целом она составляет несколько электронвольт,—величину, вообще типичную для энергии химических реакций. При этом полезно вспомнить, что разность потенциалов химических элементов, например батареи для магниевой вспышки, которая порождается химическими реакциями, порядка 1 в.

Как определить число электронов, покидающих металл за 1 сек? Очень трудно перечислить все, что может повлиять на выход электрона: легче решить задачу по-другому. Предста­вим, что мы не удаляем вылетевшие электроны, а электроны образуют нечто вроде газа и могут вернуться в металл. В этом случае существует вполне определенная равновесная плотность электронов, которая определяется такой же формулой, как (42.1), где Va, грубо говоря, — объем, отведенный в металле одному электрону, a W=qej (j —так называемая работа выхода, или разность потенциалов, необходимая для того, чтобы вырвать электрон с поверхности металла). Эта формула подскажет нам, сколько электронов должно находиться в окру­жающем пространстве и проникать в металл, чтобы скомпен­сировать потерю тех электронов, которые покинули металл. Теперь легко подсчитать, сколько электронов уйдет из металла, если мы будем непрерывно откачивать их, потому что число ушедших электронов в точности равно числу электронов, которые должны были бы вернуться в металл, если существовал электронный «пар», плотность которого определяется формулой (42.1). Иначе говоря, электрический ток через единичную площадку равен произведению заряда электрона на число электронов, проходящих за 1 сек через площадку единичной площади; последнее равно произведению числа электронов в единичном объеме на скорость: поэтому, как мы уже много раз видели,

Мы знаем, что 1 эв соответствует kT при температуре, дости­гающей 11 600 град. Нить накаливания радиолампы работает примерно при температуре 1100 град, поэтому экспоненциаль­ный множитель равен примерно е-10; когда мы слегка изменяем температуру, экспоненциальный множитель изменяется очень сильно. Это опять основное свойство формул, содержащих ехр(-qej/kT). Предэкспоненциальный множитель на самом деле совершенно неверен; оказывается, что поведение электронов в металле правильно описывает квантовая, а не классическая механика, но правильный множитель лишь немного отличается от нашего. Фактически до сих пор никто еще не смог точно вычислить этот множитель, хотя многие при расчетах пользо­вались квантовыми формулами высшего класса. Основная задача состоит в том, чтобы выяснить, не меняется ли W хотя бы мед­ленно с температурой? Если да, то медленно изменяющуюся с температурой величину W нельзя отделить от предэкспоненциальных коэффициентов. Если, например, W зависит от темпера­туры линейно, так что W= W0+akT, то