Выбрать главу

Почти полное взаимное уничтожение электрических эффек­тов и позволило физикам изучить релятивистские эффекты (т. е. магнетизм) и открыть правильные уравнения (с точно­стью до v22), даже не зная, что в них происходит. И по этой-то причине после открытия принципа относительности законы электромагнетизма не пришлось менять. В отличие от механи­ки они уже были правильны с точностью до v22.

§ 6. Электромагнетизм в науке и технике

В заключение мне хочется закончить эту главу следующим рассказом. Среди многих явлений, изучавшихся древними грека­ми, были два очень странных. Первое: натертый кусочек янта­ря мог поднять маленькие клочки папируса, и второе: близ го­рода Магнезия были удивительные камни, которые притягивали железо. Странно думать, что это были единственные известные грекам явления, в которых проявлялись электричество и магне­тизм. А почему только это и было им известно, объясняется прежде всего сказочной точностью, с которой сбалансированы в телах заряды (о чем мы уже упоминали). Ученые, жившие в позднейшие времена, раскрыли одно за другим новые явления, в которых выражались некоторые стороны тех же эффектов, связанных с янтарем и с магнитным камнем. Сейчас нам ясно, что и явления химического взаимодействия и, в конечном счете, саму жизнь нужно объяснять с помощью понятий элек­тромагнетизма.

И по мере того как развивалось понимание предмета элек­тромагнетизма, появлялись такие технические возможности, о которых древние не могли даже мечтать: стало возможным посылать сигналы по телеграфу на большие расстояния, бесе­довать с человеком, который находится за много километров от вас, без помощи какой-либо линии связи, включать огромные энергетические системы — большие водяные турбины, соеди­ненные многосоткилометровыми линиями проводов с другой машиной, которую пускает в ход один рабочий простым поворо­том колеса; многие тысячи разветвляющихся проводов и десятки тысяч машин в тысячах мест приводят в движение различные механизмы на фабриках и в квартирах. Все это вращается, двигается, работает благодаря нашему знанию законов электро­магнетизма.

Сегодня мы используем и еще более тонкие эффекты. Гигант­ские электрические силы можно сделать очень точными, их можно контролировать и использовать на всякий лад. Наши приборы так чувствительны, что мы способны узнать, что сей­час делает человек только по тому, как он воздействует на электроны, заключенные в тонком металлическом прутике за сотни километров от него. Для этого только нужно приспосо­бить этот прутик в качестве телевизионной антенны!

В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электроди­намики. На фоне этого важного научного открытия граждан­ская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием.

* Нужно только договориться о выборе знака циркуляции.

Глава 2

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРНЫХ ПОЛЕЙ

§1, Понимание физики

§2.Скалярные и векторные поля — Т и h

§3. Производные нолей —градиент

§4.0ператор ▽

§5.Оверации с ▽

§6. Дифференциальное уравнение потока тепла

§7.Вторые производные векторных полей

§8.Подвохи

Повторить гл.1 (вып. 1) «Векторы»

§ 1. Понимание физики

Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишком запутанным и не поддающимся анализу путем решения дифферен­циальных уравнений. Но можно все же полу­чить хорошее представление о поведении си­стемы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изу­чение. Это поможет нам приобрести способ­ность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой сторо­ны, ни одна из вспомогательных, эвристиче­ских моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Урав­нения обладают тем преимуществом, что, во-первых, они фундаментальны, а

во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом за­быть.

Чтобы начать понимать, что должно про­изойти в тех или иных условиях, вам понадо­бится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается раз­ница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них ма­тематически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вкла­да в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким понима­нием уравнений.

Дирак объяснил, что значит действительно понять уравне­ние — понять, не ограничиваясь его строгим математическим смыслом. Он сказал: «Я считаю, что понял смысл уравнения, если в состоянии представить себе общий вид его решения, не решая его непосредственно». Значит, если у нас есть способ узнать, что случится в данных условиях, не решая уравнения непосредственно, мы «понимаем» уравнения в применении к этим условиям. Физическое понимание — это нечто неточное, неопределенное и абсолютно нематематическое, но для физика оно совершенно необходимо.