Выбрать главу

В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электроди­намики. На фоне этого важного научного открытия граждан­ская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием.

* Нужно только договориться о выборе знака циркуляции.

Глава 2

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРНЫХ ПОЛЕЙ

§1, Понимание физики

§2.Скалярные и векторные поля — Т и h

§3. Производные нолей —градиент

§4.0ператор

§5.Оверации с

§6. Дифференциальное уравнение потока тепла

§7.Вторые производные векторных полей

§8.Подвохи

Повторить гл.1 (вып. 1) «Векторы»

§ 1. Понимание физики

Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишком запутанным и не поддающимся анализу путем решения дифферен­циальных уравнений. Но можно все же полу­чить хорошее представление о поведении си­стемы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изу­чение. Это поможет нам приобрести способ­ность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой сторо­ны, ни одна из вспомогательных, эвристиче­ских моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Урав­нения обладают тем преимуществом, что, во-первых, они фундаментальны, а

во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом за­быть.

Чтобы начать понимать, что должно про­изойти в тех или иных условиях, вам понадо­бится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается раз­ница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них ма­тематически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вкла­да в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким понима­нием уравнений.

Дирак объяснил, что значит действительно понять уравне­ние — понять, не ограничиваясь его строгим математическим смыслом. Он сказал: «Я считаю, что понял смысл уравнения, если в состоянии представить себе общий вид его решения, не решая его непосредственно». Значит, если у нас есть способ узнать, что случится в данных условиях, не решая уравнения непосредственно, мы «понимаем» уравнения в применении к этим условиям. Физическое понимание — это нечто неточное, неопределенное и абсолютно нематематическое, но для физика оно совершенно необходимо.

Обычно курс физики подобного рода строится так, что физи­ческие представления развиваются постепенно: начиная с са­мых простейших явлений, переходят ко все более и более слож­ным. Кое-что из изученного при этом неминуемо забывается (то, что верно лишь в определенных условиях, а не всегда). К примеру, «закон» обратных квадратов для электрической силы верен не всегда. Нам больше по душе обратный подход. Луч­ше начать с полных, самых общих законов, а затем повер­нуть вспять и применять их к простым задачам, развивая фи­зические представления по мере продвижения вперед. Так мы и собираемся сделать.