§ 7. Вторые производные векторных полей
Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно составить несколько комбинаций:
(2.45)
Вы можете убедиться, что никаких иных комбинаций быть не может.
Посмотрим сперва на вторую комбинацию (б). Она имеет ту же форму, что и
АX(АT) = (АXА)T = 0, потому что АXА всегда нуль. Значит,
(2.46)
Можно понять, как это получается, если расписать одну из компонент:
что равно нулю [по уравнению (2.8)]. Это же верно и для других компонент. Стало быть, СХ(СT)=0 для любого распределения температур, да и для всякой скалярной функции.
Возьмем второй пример. Посмотрим, нельзя ли получить нуль другим путем. Скалярное произведение вектора на векторное произведение, содержащее этот вектор, равно нулю
А·(АХВ) = 0, (2.48)
потому что АХВ перпендикулярно к А и не имеет тем самым составляющих вдоль А. Сходная комбинация стоит в списке (2.45) под номером (г):
С(СXh) = div(roth) = 0. (2.49)
В справедливости этого равенства опять-таки легко убедиться, проделав выкладки на компонентах.
Теперь сформулируем без доказательства две теоремы. Они очень интересны и весьма полезны для физиков.
В физических задачах часто оказывается, что ротор какой-то величины (скажем, векторного поля А) равен нулю. Мы видели в уравнении (2.46), что ротор градиента равен нулю. (Это легко запоминается по свойствам векторов.) Далее, может оказаться, что А будет градиентом какой-то величины, потому что тогда ротор А с необходимостью обратится в нуль. Имеется интересная теорема, утверждающая, что если ротор А есть нуль, то тогда А непременно окажется чьим-то градиентом; существует некоторое скалярное поле ш; (пси), такое, что A=gradш. Иными словами, справедлива
Т Е О Р Е М А
Если СXА = 0,
то имеется ш, (2.50)
такое, что А = Сш.
. Сходная теорема формулируется и для случая, когда дивергенция А есть нуль. Из уравнения (2.49) видно, что дивергенция ротора любой величины равна всегда нулю. Если вам случайно встретилось векторное поле D, для которого div D — нуль, то вы имеете право заключить, что D это ротор некоторого векторного поля С.
ТЕОРЕМА
Если С·D = 0,
то имеется С, (2.51)
такое, что D = СXC.
Перебирая всевозможные сочетания двух операторов у, мы обнаружили, что два из них всегда дают нуль. Займемся теперь теми, которые не равны нулю. Возьмем комбинацию С· (СT), первую в нашем списке. В общем случае это не нуль. Выпишем компоненты
Далее,
(2.52)
что может, вообще говоря, быть любым числом. Это скалярное поле.
Вы видите, что скобок можно не ставить, а вместо этого писать, не рискуя ошибиться:
(2.53)
Можно рассматривать С2 как новый оператор. Это скалярный оператор. Так как он в физике встречается часто, ему дали особое имя — лапласиан.
(2.54)
Раз оператор лапласиана —оператор скалярный, он может действовать и на вектор. Под этим мы подразумеваем, что он применяется к каждой компоненте вектора
Рассмотрим еще одну возможность: СX(СX h) [(д) в списке (2.45)]. Ротор от ротора можно написать иначе, если использовать векторное равенство (2.6)
АX(ВXС) = В(А·С)-С(А·В). (2.55)
Заменим в этой формуле А и В оператором у и положим C=h. Получится
СX(СXh) = С(Сb)-h(С·С)...???
Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но последний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде
АX(ВXС) = В(А·С) -(А·В)С. (2.56)
Такой порядок членов выглядит уже лучше. Сделаем нашу подстановку в (2.56). Получится
СX (СXh) = С (Сh)-( С·С)h. (2.57)
С этой формулой уже все в порядке. Она действительно правильна, в чем вы можете убедиться, расписав компоненты. Последний член — это лапласиан, так что с равным успехом можно написать
СX (СXh) = С(С·h)- С2h. (2.58)
Из нашего списка (2.45) двойных С мы разобрали все комбинации, кроме (в), С(С·h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь расчете.