Выбрать главу

Укажем теперь на интересное свойство потока любого век­тора. Можете при этом представлять себе вектор потока тепла, но верно это будет и для произвольного векторного поля С. Представьте себе замкнутую поверхность S, окружающую объем V. Разобьем теперь объем на две части каким-то «сече­нием» (фиг. 3.4). Получились два объема и две замкнутые по­верхности. Объем V1 окружен поверхностью S1 , составленной частью из прежней поверхности Sa и частью из «сечения» Sab. Объем V2 окружен поверхностью S2, составленной из остатка прежней поверхности (Sb) и замкнутой сечением Sab. Зададим вопрос: если мы рассчитаем поток через поверхность Sl и при­бавим к нему поток сквозь поверхность S2, будет ли их сумма равна потоку через первоначальную поверхность? Ответ гласит: «Да». Потоки через часть Sab , общую обеим поверхностям S1 и S2, в точности сократятся. Для потока вектора С из V1 можно написать

(3.14)

а для потока из V2:

(3.15)

Заметьте, что во втором интеграле мы обозначили внешнюю нормаль к Sab буквой n1, если она относится к S1 , и буквой n2, если она относится к S1 (см. фиг. 3.4).

Фиг. 3.4. Объем V, заключенный внутри поверхности S, делится на две части «сече­нием» (поверхностью Sab). Получается объем V1, окруженный поверхностью S1 = Sa+Sab, и объем V2, окруженный поверхностью S2= Sb+Sab.

Ясно, что n1=-n2, и тем

самым

(3.16)

Складывая теперь уравнения (3.14) и (3.15), мы убеждаемся, что сумма потоков сквозь S1 и S2 как раз равна сумме двух ин­тегралов, которые, взятые вместе, дают поток через перво­начальную поверхность S=Sa+Sb.

Мы видим, что поток через всю внешнюю поверхность S можно рассматривать как сумму потоков из тех двух частей, на которые разрезан объем. Эти части можно еще разрезать: скажем, V1 разбить пополам. Опять придется прибегнуть к тем же доводам. Так что для любого способа разбиения первоначаль­ного объема всегда остается справедливым то свойство, что по­ток через внешнюю поверхность (первоначальный интеграл) равен сумме потоков изо всех внутренних частей.

§ 3. Поток из куба; теорема Гаусса

Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, суть х, у, z, ребро куба в направлении х равно Dx, ребро куба (а точнее, бруска) в направлении у равно Dy, а в направлении z равно Dz. Мы хотим найти поток вектор­ного поля С через поверхность куба. Для этого вычислим сумму потоков через все шесть граней. Начнем с грани 1 (см. фиг. 3.5).

Поток наружу сквозь нее равен x-компоненте С с минусом, проинтегрированной по площади грани. Он равен

Так как куб считается малым, этот интеграл можно заменить значением Сх в центре грани 1эту точку мы обозначили (1), умноженным на площадь грани DyDz:

Поток сквозь 1 наружу=-Cx(1)DyDz.

Подобным же образом поток наружу через грань 2 равен