Выбрать главу

Фиг. 3.9. Некоторая поверх­ность, ограниченная конту­ром Г.

Поверхность разделена на множе­ство маленьких участков, каждый примерно в форме квадрата. Цир­куляция по Г есть сумма циркуля­ции по всем маленьким контурам.

Какой бы ни была форма поверхности, но если малые контуры сделать до­статочно малыми, всегда можно будет считать каждый из них замыкающим достаточно плоскую поверхность. Кроме того, каждый из них можно сделать очень похожим на квадрат. И циркуляцию вокруг большого контура Г можно найти, под­считав циркуляции по всем квадратикам и сложив их.

§ 6. Циркуляция по квадрату; теорема Стокса

Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он распо­ложен в одной из координатных плоскостей), то расчет сде­лать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое вни­мание, оказался в плоскости ху (фиг. 3.10). Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.

Фиг. 3.10. Вычисление цирку­ляции вектора С по маленькому квадратику.

Мы хотим теперь найти циркуляцию поля С по нашему квад­ратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на про­тяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадра­тиках.) Отправившись от точки (х, у) — в левом нижнем углу фигуры,— мы обойдем весь квадрат в направлении, указанном стрелками. Вдоль первой стороны, отмеченной цифрой 1, ка­сательная составляющая равна Сх(1), а расстояние равно Dх. Первая часть интеграла равна Cx(1) Dх, Вдоль второй стороны получится Су(2) Dy. Вдоль третьей мы получим -Сx(3) Dх, а вдоль четвертой -Cy(4) Dy. Знаки минус стоят потому, что нас интересует касательная составляющая в направлении об­хода. Весь криволинейный интеграл тогда равен

(3.31) Посмотрим теперь на первый и третий члены. В сумме они дают

(3.32)

Вам может показаться, что в принятом приближении эта раз­ность равна нулю. Но это только в первом приближении. Мы можем быть более точными и учесть скорость изменения Сх , тогда можно написать

(3.33)

В следующем приближении пойдут члены с (Dy)2, но ввиду того, что нас интересует в конечном счете только предел при Dy®0, то этими членами можно пренебречь. Подставляя (3.33) в (3.32), мы получаем

(3.34)

Производную при нашей точности можно брать в точке (х, у). Подобным же образом оставшиеся два члена можно написать в виде

(3.35)

и циркуляция по квадрату тогда равна

(3.36)

Интересно, что в скобках получилась как раз z-компонента ротора С. Множитель DxDy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как

(СXС)zDа.

Но z-компонента это на самом деле компонента, нормальная к элементу поверхности.

Фиг. 3.11. Циркуляция век­тора С по Г равна поверхност­ному интегралу от нормальной компоненты вектора СXС.

Поэтому циркуляцию вокруг квад­ратика можно задать и в инвариантной векторной записи:

(3.37)

В результате имеем: циркуляция произвольного вектора С по бесконечно малому квадрату равна произведению состав­ляющей ротора С, нормальной к поверхности, на площадь квад­рата.

Циркуляция по произвольному контуру Г легко теперь может быть увязана с ротором векторного поля. Натянем на кон­тур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности. Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].

ТЕОРЕМА СТОКСА

(3.38)

где S произвольная поверхность, ограниченная контуром Г. Теперь мы должны ввести соглашение о знаках. На приведен­ной ранее фиг. 3.10 ось z показывает на вас, если система коорди­нат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора СXC. Обойди мы кон­тур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты век­тора СXC? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Об­щий случай показан на фиг. 3.11.