Выбрать главу

Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Г, чтобы кончики пальцев показывали положительное направление обхода ds, то ваш большой палец укажет направление положи­тельной нормали к поверхности S.

§ 7. Поля без роторов и поля без дивергенций

Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возь­мем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то кри­волинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали. Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользо­вались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позво­лило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функ­ции [см. вып. 1, уравнение (14.13)].

Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента неко­торой скалярной функции, т. е. если АXС=0 всюду, то существует некоторая функция y (пси), для которой С = Сy (полезное представление). Значит, мы можем, если захотим, опи­сывать этот род векторных полей при помощи скалярных полей.

Теперь докажем еще одну формулу. Пусть у нас есть про­извольное скалярное поле j (фи). Если взять его градиент Сj, то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю.

Фиг. 3.12. Если СXС равно нулю, то циркуляция по замкнутой при­вой Г тоже нуль.

Криволинейный интеграл от C·ds на участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.

Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхно­стный интеграл от (СXС)n должен обратиться в нуль.

Криволинейный интеграл от точки (1) до точки (2) равен [j(2)- j (1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:

Применяя теорему Стокса, можно заключить, что

по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,

Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.

Рассмотрим теперь частный случай, когда на маленький контур Г натягивается большая поверхность S (фиг. 3.13). Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор С повсюду конечен, то криволинейный интеграл по Г должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Г, а она убывает). Согласно теореме Стокса, поверхност­ный интеграл от (СXС)n тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в ин­теграл привносится вклад, который взаимно уничтожается с накопленным

ранее. Получается новая теорема:

Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Та­кой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к СXС утверждает, что