Выбрать главу

§ 3. Электрический потенциал

Для начала усвоим понятие электрического потенциала, связанное с работой переноса заряда из одной точки в другую. Пусть имеется какое-то распределение зарядов. Оно создает электрическое поле. Спрашивается, какую работу надо затра­тить, чтобы перенести небольшой заряд из одной точки в другую? Работа, произведенная против действия электрических сил при переносе заряда по некоторому пути, равна минус компоненте электрической силы в направлении движения, проинтегрирован­ной по этому пути. Если заряд переносится от точки а к точке b, то

Фиг. 4.2. Работа переноса заряда от а к b равна минус интегралу от F·ds no выбранному пути.

где F — электрическая сила, действующая на заряд в каждой точке, a ds — дифференциал вектора перемещения вдоль траек­тории (фиг. 4.2).

Для наших целей интереснее рассмотреть работу переноса единицы заряда. Тогда сила, действующая на такой заряд, численно совпадает с электрическим полем. Обозначая в этом случае работу против действия электрических сил буквой Wедин , напишем

(4.19)

Вообще говоря, то, что получается при интегрированиях такого сорта, зависит от выбранного пути интегрирования. Но если бы интеграл в (4.19) зависел от пути, мы бы могли извлечь из поля работу, поднеся заряд к b по одному пути и унеся обратно к а по другому. Можно было бы подойти к b по тому пути, где W меньше, а удалиться по тому пути, где оно больше, получив работы больше, чем было вложено,

В принципе нет ничего невозможного в том, чтобы получать работу из поля. Мы еще познакомимся с полями, в которых это возможно. Может оказаться, что, двигая заряды, вы действуете на остальную часть всего «механизма» с какой-то силой. Если «механизм» сам движется против этой силы, он будет терять энергию, и полная энергия будет тем самым оставаться постоян­ной. В электростатике, однако, никакого «механизма» нет. Мы знаем, каковы те силы отдачи, которые действуют на источ­ники поля. Это кулоновские силы, действующие на заряды, ответственные за создание поля. Если положения всех прочих зарядов зафиксированы (а это допущение делается в одной только электростатике), то силы отдачи на них не смогут дей­ствовать. И тогда нет способа извлечь из них энергию, разу­меется, при условии, что принцип сохранения энергии в элект­ростатике справедлив. Мы, конечно, верим, что это так, однако попробуем все же показать, как это следует из закона силы Кулона.

Посмотрим сначала, что происходит в поле, созданном еди­ничным зарядом q. Пусть точка а удалена от q на расстояние r1, а точка bна расстоя­ние r2.

Фиг. 4.3. При переносе проб­ного заряда от а к b по любому пути тратится одна и та же работа.

Перенесем теперь другой заряд, называемый «пробным» и равный еди­нице, от а до b. Изберем сперва самый легкий для расчета путь. Перенесем наш пробный заряд снача­ла по дуге круга, а после no радиусу (фиг. 4.3, а).

Рассчитать работу переноса по такому пути - детская забава (а иначе бы мы его и не выбрали). Во-первых, на участке aa' работа не производится. Поле по закону Кулона радиально, т. е. направлено поперек направления движения. Во-вторых, на участке a'b поле меняется как 1/r2 и направлено по движению. Так что работа переноса пробного заряда от а к b равна

Выберем теперь другой легкий путь, скажем тот, который изображен на фиг. 4.3, б. Он идет попеременно то по дуге ок­ружности, то по радиусу. Каждый раз, когда путь пролегает по дуге, никакой работы не затрачивается. Каждый раз, когда путь идет по радиусу, интегрируется 1/r2. По первому радиаль­ному участку интеграл берется от ra до ra., по следующему — от rа. до rа" и т. д. Сумма всех таких интегралов как раз равна одному интегралу, но в пределах от rа до rb . В общем получится тот же ответ, что и в первом испробованном нами пути. Ясно, что и для любого пути, составленного из произвольного числа участков такого вида, получится тот же результат.