(1.2)
Значит, если Е и В известны, то можно определить движение зарядов. Остается только узнать, как получаются Е и В.
Один из самых важных принципов, упрощающих получение величины полей, состоит в следующем. Пусть некоторое количество движущихся каким-то образом зарядов создает поле E1 , a другая совокупность зарядов — поле Е2. Если действуют оба набора зарядов одновременно (сохраняя те же свои положения и движения, какими они обладали, когда рассматривались порознь), то возникающее поле равно в точности сумме
Е = Е1 + Е2. (1.3)
Этот факт называется принципом наложения полей (или принципом суперпозиции}. Он выполняется и для магнитных полей.
Принцип этот означает, что если нам известен закон для электрического и магнитного полей, образуемых одиночным зарядом, движущимся произвольным образом, то, значит, нам известны все законы электродинамики. Если мы хотим знать силу, действующую на заряд А, нам нужно только рассчитать величину полей Е и В, созданных каждым из зарядов В, С, D и т. д., и сложить все эти Е и В; тем самым мы найдем поля, а из них — силы, действующие на А. Если бы оказалось, что поле, создаваемое одиночным зарядом, отличается простотой, то это стало бы самым изящным способом описания законов электродинамики. Но мы уже описывали этот закон (см. вып. 3, гл. 28), и, к сожалению, он довольно сложен.
Оказывается, что форма, в которой законы электродинамики становятся простыми, совсем не такая, какой можно было бы ожидать. Она не проста, если мы захотим иметь формулу для силы, с которой один заряд действует на другой. Правда, когда заряды покоятся, закон силы — закон Кулона — прост, но когда заряды движутся, соотношения усложняются из-за запаздывания во времени, влияния ускорения и т. п. В итоге лучше не пытаться строить электродинамику с помощью одних лишь законов сил, действующих между зарядами; гораздо более приемлема другая точка зрения, при которой с законами электродинамики легче управляться.
§ 2. Электрические и магнитные поля
Первым делом нужно несколько расширить наши представления об электрическом и магнитном векторах Е и В. Мы определили их через силы, действующие на заряд. Теперь мы намереваемся говорить об электрическом и магнитном полях в точке, даже если там нет никакого заряда.
Фиг. 1.1. Векторное поле, представленное множеством стрелок, длина и направление которых отмечают величину векторного поля в тех точках, откуда выходят стрелки.
Следовательно, мы утверждаем, что раз на заряд «действуют» силы, то в том месте, где он стоял, остается «нечто» и тогда, когда заряд оттуда убрали. Если заряд, расположенный в точке (х, у, z), в момент t ощущает действие силы F, согласно уравнению (1.1), то мы связываем векторы Е и В с точкой (х, у, z) в пространстве. Можно считать, что Е (х, y, z, t) и В (х, у, z, t) дают силы, действие которых ощутит в момент t заряд, расположенный в (х, у, z), при условии, что помещение заряда в этой точке не потревожит ни расположения, ни движения всех прочих зарядов, ответственных за поля.
Следуя этому представлению, мы связываем с каждой точкой (х, у, z) пространства два вектора Е и В, способных меняться со временем. Электрические и магнитные поля тогда рассматриваются как векторные функции от х, у, z и t. Поскольку вектор определяется своими компонентами, то каждое из полей Е (х, у, 2, t) и В (х, у, z, t) представляет собой три математические функции от х, у, z и t.
Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках пространства принимает различные значения. Скажем, температура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может меняться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v (х, у, z, t). Поле это векторное.