Выбрать главу

Предположим, что мы на мгновение представили себе элект­рическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!).

Фиг. 4.5. Поток E из поверхности S равен нулю.

Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h — вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r2. Теперь мы желаем исполь­зовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь прос­той закон, мы хотим трусливо протащить то же самое, но с зад­него хода. Немного терпения! Это окажется небесполезным.) Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как пока­зано на фиг. 4.5. Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и полу­чается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На бо­ковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r2, а площадь грани растет как r2, так что их произведение от r не зависит. Приток Е через грань а в точности гасится оттоком через грань b. Суммарный поток через S равен нулю, а это все равно, что сказать, что

(4.30)

на этой поверхности.

Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены отно­сительно радиуса. Хотя это верно всегда, но для наших целей

Фиг. 4.6. Поток Е из поверхности S равен нулю.

достаточно только показать, что это справедливо тогда, когда «торцы» малы и стягивают малый угол с вершиной в источнике, т. е. в действительности бесконечно малый угол. На фиг. 4.6 показана поверхность S, «боковые грани» которой радиальны, а «торцы» перекошены. На рисунке они не малы, но надо пред­ставить себе, что на самом деле они очень малы. Тогда поле Е над поверхностью будет достаточно однородным, так что можно взять его значение в центре. Если торец наклонен на угол q, то его площадь возрастает в 1/cosq раз, а Еnкомпонента Е, нормальная к поверхности торца, убывает в cosq раз, так что произведение ЕnDа не меняется. Поток из всей поверхности S по-прежнему равен нулю.

Теперь уже легко разглядеть, что и поток из объема, окру­женного произвольной поверхностью S, обязан быть равным ну­лю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность раз­делится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7. Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.

Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно ма­лых усеченных конусов.

Поток E сквозь один конец каж­дого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.

Фиг. 4.8. Если заряд нахо­дится внутри поверхности, поток наружу не равен нулю.

Будьте, однако, внимательны! Наше доказательство рабо­тает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разде­лить на пары площадок, связанные радиальными прямыми, про­ходящими через заряд (фиг. 4.8). Потоки через эти участки по той же причине, что и раньте, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхно­стью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9). Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий по­ток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.