Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следующее важное свойство: связь между значениями полей в некоторой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.
Фиг. 1.2. Векторное поле, представленное линиями, касательными к направлению векторного поля в каждой точке.
Плотность линий указывает величину вектора поля.
Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо просто рассматривать поля как математические функции координат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по вектору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приводится на фиг. 1.1. Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками я сохраняют направление поля. Если это сделать, то сведения о длинах векторов будут утеряны, но их можно сохранить, если в тех местах, где напряженность поля мала, провести линии пореже, а где велика — погуще. Договоримся, что число линий на единицу площади, расположенной поперек линий, будет пропорционально напряженности поля. Это, конечно, всего лишь приближение; иногда нам придется добавлять новые линии, чтобы их количество отвечало напряженности поля. Поле, изображенное на фиг. 1.1, представлено линиями поля на фиг. 1.2.
§ 3. Характеристики векторных полей
Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем случае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает.
Фиг. 1.3. Поток векторного поля через поверхность, определяемый как произведение среднего значения перпендикулярной составляющей вектора на площадь этой поверхности.
Общее количество жидкости, вытекающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммарный поток равен среднему значению нормальной компоненты скорости (отсчитываемой наружу), умноженному на площадь поверхности:
Поток = (Средняя нормальная компонента)·(Площадь поверхности).
(1.4)
В случае электрического поля можно математически определить понятие, сходное с истоком жидкости; мы тоже
Фиг. 1.4. Поле скоростей в жидкости (а).
Представьте себе трубку постоянного сечения, уложенную вдоль произвольной замкнутой кривой (б). Если жидкость внезапно заморозить повсюду, кроме трубки, то жидкость в трубке начнет циркулировать (в).
Фиг. 1.5. Циркуляция векторного поля, равная произведению
средней касательной составляющей вектора (с учетом ее знака
по отношению к направлению обхода) на длину контура.
называем его потоком, но, конечно, это уже не течение какой-то жидкости, потому что электрическое поле нельзя считать скоростью чего-то. Оказывается все же, что математическая величина, определяемая как средняя нормальная компонента поля, по-прежнему имеет полезное значение. Тогда мы говорим о потоке электричества, также определяемом уравнением (1.4). Наконец, полезно говорить и о потоке не только сквозь замкнутую, но и сквозь любую ограниченную поверхность. Как и прежде, поток сквозь такую поверхность определяется как средняя нормальная компонента вектора, умноженная на площадь поверхности. Эти представления иллюстрируются фиг. 1.3. Другое свойство векторных полей касается не столько поверхностей, сколько линий. Представим опять поле скоростей, описывающее поток жидкости. Можно задать интересный вопрос: циркулирует ли жидкость? Это значит: существует ли вращательное ее движение вдоль некоторого замкнутого контура (петли)? Вообразите себе, что мы мгновенно заморозили жидкость повсюду, за исключением внутренней части замкнутой в виде петли трубки постоянного сечения (фиг. 1.4). Снаружи трубки жидкость остановится, но внутри она может продолжать двигаться, если в ней (в жидкости) сохранился импульс, т. е. если импульс, который гонит ее в одном направлении, больше импульса в обратном. Мы определяем величину, называемую циркуляцией, как скорость жидкости в трубке, умноженную на длину трубки. Опять-таки мы можем расширить наши представления и определить «циркуляцию» для любого векторного поля (даже если там нет ничего движущегося). У всякого векторного поля циркуляция по любому воображаемому замкнутому контуру определяется как средняя касательная компонента вектора (с учетом направления обхода), умноженная на протяженность контура (фиг. 1.5):