Выбрать главу

Мы можем смотреть на это тело, как на скопление точеч­ных зарядов qi в некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы qi заменим на pdV.) Пускай заряд qi удален от начала координат, выбранного где-то внутри груп­пы зарядов, на расстояние di . Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много боль­шем, чем самое большое из di,? Потенциал всего нашего скопле­ния выражается формулой

(6.21)

где ri — расстояние от Р до заряда qi (длина вектора R-di). Если расстояние от зарядов до Р (до точки наблюдения) чрез­вычайно велико, то каждое из ri можно принять за R. Каждый член в сумме станет равным qi/R, и 1IR можно будет вынести из-под знака суммы. Получится простой результат

(6.22)

где Q суммарный заряд тела. Таким образом, мы убеди­лись, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.

Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд Q тогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного рас­пределения зарядов в нейтральном теле мы нуждаемся в при­ближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать ri=R больше нельзя. Для ri нужно выражение поточнее. В хорошем приближении ri можно считать отличающимся от R (если точка Р сильно уда­лена) на проекцию вектора d на вектор R (см. фиг. 6.7, но вы должны только представлять себе, что Р намного дальше, чем показано). Иными словами, если er — единичный вектор в нап­равлении R, то за следующее приближение к ri нужно принять

(6.23)

Но нам ведь нужно не ri, а 1/ri; оно в нашем приближении (с учетом di<<R) равно

(6.24)

Подставив это в (6.21), мы увидим, что потенциал равен

(6.25)

Многоточие указывает члены высшего порядка по d/R, ко­торыми мы пренебрегли. Как и те члены, которые мы выписали, это последующие члены разложения 1/ri в ряд Тэйлора в ок­рестности 1/R по степеням di/R,

Первый член в (6.25) мы уже получили; в нейтральных телах он пропадает. Второй член, как и у диполя, зависит от 1/R2. Действительно, если мы определим

(6.26)

как величину, описывающую распределения зарядов, то вто­рой член потенциала (6.25) обратится в

(6.27)

т. е. как раз в дипольный потенциал. Величина р называется дипольным моментом распределения. Это обобщение нашего прежнего определения; оно сводится к нему в частном случае точечных зарядов.

В итоге мы выяснили, что достаточно далеко от любого набора зарядов потенциал оказывается дипольным, лишь бы этот набор был в целом нейтральным. Он убывает, как 1/R2, и меняется, как cos 0, а величина его зависит от дипольного момента распределения зарядов. Именно по этой причине поля диполей и важны; сами же по себе пары точечных зарядов встре­чаются крайне редко.

У молекулы воды, например, дипольный момент довольно велик. Электрическое поле, создаваемое этим моментом, ответ­ственно за некоторые важные свойства воды. А у многих моле­кул, скажем у СO2, дипольный момент исчезает благодаря их симметрии. Для таких молекул разложение нужно проводить еще точнее, до следующих членов потенциала, убывающих как 1/R3 и называемых квадрупольным потенциалом. Эти случаи мы рассмотрим позже.