Выбрать главу

В книгах можно найти длинные перечни решений задачи электростатики для гиперболических поверхностей и других сложных штук. Вас могло бы удивить, как это удалось рассчи­тать поля близ поверхностей столь ужасной формы. Но они были рассчитаны задом наперед! Кто-то решил простую задачу

Фиг. 6.9. Поле вне проводника, изогнутого вдоль эквипотенци­альной поверхности А на пре­дыдущем рисунке.

с фиксированными зарядами. А затем обнаружил, что появля­ются некоторые эквипотенциальные поверхности новой формы, ну и написал работу, в которой указал, что поля снаружи про­водника такой формы могут быть изображены так-то и так-то.

§ 8. Точечный заряд у проводящей плоскости

В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этого зачеркнем просто левую часть фигуры. Линии поля нашего решения показаны на фиг. 6.10. Заметьте, что плоскость обладает нулевым потенциалом, потому что она находится как раз на полпути между зарядами. Мы решили за­дачу о положительном заряде вблизи заземленной проводящей плоскости.

Так мы узнали суммарное поле, но что можно сказать о том, каковы те реальные заряды, которые создали его? Кроме нашего положительного точечного заряда, ими являются какие-то отри­цательные заряды, наведенные на проводящей плоскости и при­тянутые положительным зарядом (с каких-то далеких расстоя­ний). Но теперь пусть вам захотелось узнать (то ли для техни­ческих целей, то ли просто из любопытства), как распределены эти отрицательные заряды по поверхности. Поверхностную плотность заряда вы сможете узнать, использовав результат, полученный в гл. 5, § 6 при помощи теоремы Гаусса. Нормаль­ная составляющая электрического поля возле самого провод­ника равна плотности поверхностного заряда а, деленной на e0. Мы можем узнать плотность заряда в каждой точке поверхности, отправляясь назад от нормальной составляющей электриче­ского поля на поверхности. А ее мы знаем, потому что вообще нам известно поле в любой точке.

Фиг. 6.10. Поле заряда, помещенного близ плоской проводящей поверхности, найденное методом изображений.

Рассмотрим точку поверхности на расстоянии r от той точки, которая расположена прямо против положительного заряда (см. фиг. 6.10). Электрическое поле в этой точке нор­мально к поверхности и направлено внутрь нее. Составляющая поля положительного точечного заряда, нормальная к поверх­ности, равна

(6.28)

К ней мы должны добавить электрическое поле, созданное отри­цательным зеркальным зарядом. Это удвоит нормальную со­ставляющую (и уничтожит все прочие), так что плотность за­ряда 0 в произвольной точке поверхности будет равна

(6.29)

Проинтегрировав а по всей поверхности, мы сможем прове­рить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -q.

Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверх­ностные заряды [по формуле (6.29)], то можем с помощью интег­рирования подсчитать силу, действующую на наш положитель­ный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к пло­скости, равную

(6.30)

Мы определили эту силу очень легко, без интегрирования по отрицательным зарядам.

§ 9. Точечный заряд у проводящей сферы

А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотен­циальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда-изображения и нужную его величину, может быть, тогда мы и сможем подо­гнать эквипотенциальную поверхность к нашей сфере.