(7.32)
Уравнение (7.31) дает
(7.33)
Заметьте, что теперь в правой части стоит знак плюс (решение не колебательное, а экспоненциальное).
Фиг. 7.7. Изменение потенциала у поверхности коллоидной частицы. D — дебаевская длина.
Общее решение (7.33) имеет вид
(7.34)
где
(7.35)
Постоянные А и В определяются из добавочных условий. В нашем случае В должно быть нулем, иначе потенциал для больших х обратится в бесконечность. Итак,
(7.36)
где А — потенциал при x=0 на поверхности коллоидной частицы.
Потенциал убывает в e раз при удалении на D (фиг. 7.7). Число D называется дебаевской длиной; это мера толщины ионной оболочки, окружающей в электролите каждую большую заряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n0) или уменьшения температуры.
Постоянную А в (7.36) легко получить, если известен поверхностный заряд а на поверхности заряженной частицы. Мы знаем, что
(7.37)
Но Е это также градиент j
(7.38)
откуда получается
(7.39)
Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен
(7.40)
Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда s .
Мы сказали, что коллоидные частицы не слипаются вследствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала достаточно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».
Другой интересный пример — это влияние растворения соли На осаждение белка. Молекула белка — это длинная, сложная и гибкая цепь аминокислот. На ней там и сям имеются заряды, и временами заряд какого-то одного знака, скажем отрицательного, распределяется вдоль всей цепи. В результате взаимного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследствие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли много, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.
§ 5. Электростатическое поле сетки
Напоследок мы хотим изложить еще одно интересное свойство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрического поля близ сетки, составленной из заряженных проволочек. Чтоб упростить задачу, возьмем плоскую систему параллельных проволочек бесконечной длины, промежутки между которыми одинаковы.
Если мы посмотрим на поле где-то высоко над плоскостью проволочек, перед нами предстанет однородное электрическое поле, такое, словно заряд распределен на плоскости равномерно. По мере приближения к сетке начнутся отклонения от прежней однородности. Мы хотим оценить, насколько близко от сетки появятся заметные изменения в потенциале.
Фиг. 7.8. Эквипотенциальные поверхности над однородной сеткой из заряженных проволочек.
На фиг. 7.8 показано примерное расположение эквипотенциальных поверхностей на разных расстояниях от сетки. Чем ближе к сетке, тем сильнее колебания. Двигаясь параллельно сетке, мы заметим, что поле изменяется периодически.