Выбрать главу

Энергия иона по отношению к его ближайшему соседу равна —e2/a, где e2=q2e/4pe0, а а — промежуток между центрами ио­нов. (Мы рассматриваем одновалентные ионы.) Эта энергия рав­на —5,12 эв; мы уже видим, что ответ получается правильного порядка величины. Но нам еще предстоит подсчитать бесконеч­ный ряд членов.

Начнем со сложения энергий всех ионов, лежащих по пря­мой. Считая ион, отмеченный на фиг. 8.5 значком Na, нашим выделенным ионом, сперва рассмотрим те ионы, которые лежат на одной с ним горизонтали. Там есть два ближайших к нему иона хлора с отрицательными зарядами, на расстоянии я от Na каждый. Затем идут два положительных иона на расстояниях 2а и т. д. Обозначая эту сумму энергий U1, напишем

(8.19)

Ряд сходится медленно, так что численно его оценить трудно,

но известно, что он равен ln2. Значит,

(8.20)

Теперь перейдем к ближайшей линии, примыкающей сверху. Ближайший ион отрицателен и находится на расстоянии а. Затем стоят два положительных на расстоянияхЦ2а. Следующая пара — на расстоянии Ц5а, следующая— наЦ10а и т. д. Для всей линии получается ряд

(8.21)

Таких линий четыре: выше, ниже, спереди и сзади. Затем име­ются четыре линии, которые являются ближайшими по диагона­ли, и т. д. и т. д.

Если вы терпеливо произведете подсчеты для всех линий и затем все сложите, то увидите, что итог таков:

Это число немного больше того, что было получено в (8.20) для первой линии. Учитывая, что е2/а=-5,12 эв, мы получим

Наш ответ приблизительно на 10% больше экспериментально наблюдаемой энергии. Он показывает, что наше представление о том, что вся решетка скрепляется электрическими кулоновскими силами, в основе своей правильно. Мы впервые получили спе­цифическое свойство макроскопического вещества из наших по­знаний в атомной физике. Со временем мы добьемся гораздо большего. Область науки, пробующая понять поведение боль­ших масс вещества на языке законов атомного поведения, назы­вается физикой твердого тела.

А как же с ошибкой в наших расчетах? Почему они не до конца верны? Мы не учли отталкивание между ионами на близ­ких расстояниях. Это ведь не совершенно жесткие сферы, так что, сблизясь, они немного сплющиваются. Но они не очень мягкие и сплющиваются самую чуточку. Все же какая-то энер­гия уходит на эту деформацию, и вот, когда ионы разлетаются, эта энергия высвобождается. Энергия, которая на самом деле нужна для того, чтобы развести все ионы врозь, чуть меньше той, которую мы вычислили; отталкивание помогает преодолеть электростатическое притяжение.

А есть ли возможность как-то прикинуть долю этого оттал­кивания? Да, если мы знаем закон силы отталкивания. Мы еще не умеем пока анализировать детали механизма отталкивания, но некоторое представление о его характеристиках мы можем получить из макроскопических измерений. Измеряя сжимае­мость кристалла как целого, можно получить количественное представление о законе отталкивания между ионами, а отсю­да — о его вкладе в энергию. Таким путем было обнаружено, что вклад этот должен составлять 1/9,4 часть вклада от электро­статического притяжения и иметь, естественно, противополож­ный знак. Если этот вклад мы вычтем из чисто электростатиче­ской энергии, то получим для энергии диссоциации на молекулу число 7,99 эв. Это намного ближе к наблюдаемому результату 7,92 эв, но все еще не находится в совершенном согласии. Есть еще одна вещь, которую мы не учли: мы не сделали никаких до­пущений о кинетической энергии колебаний кристалла. Если сделать поправку на этот эффект, то сразу возникнет очень хоро­шее согласие с экспериментальной величиной. Значит, наши представления правильны: главный вклад в энергию кристалла, такого, как NaCl, является электростатическим.

§ 4. Электростатическая энергия ядра

Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойства тех основных сил (называемых ядерными силами), которые скрепляют между собой протоны и нейтроны в ядре. Первое время после открытия ядер — и про­тонов с нейтронами, которые их составляют,— надеялись, что закон сильной, неэлектрической части силы, действующей, на­пример, между одним протоном и другим, будет иметь какой-нибудь простой вид, подобный, скажем, закону обратных квад­ратов в электричестве. Если бы удалось определить этот закон сил и, кроме того, сил, действующих между протоном и нейт­роном и между нейтроном и нейтроном, то тогда можно было бы теоретически описать все поведение этих частиц в ядрах. Поэтому начала разворачиваться большая программа изучения рассеяния протонов в надежде отыскать закон сил, действую­щих между ними; но после тридцатилетних усилий ничего про­стого не возникло. Накопился заметный багаж знаний о силах, действующих между протоном и протоном, но при этом обнару­жилось, что эти силы сложны настолько, насколько возможно себе представить.