Выбрать главу

Кажется, первым, заметившим, что поле внутри заряженной сферы равно нулю, был Бенджамен Франклин. Это показалось ему странным. Когда он сообщил об этом Пристли, тот заподоз­рил, что это связано с законом обратных квадратов, потому что было известно, что сферический слой вещества не создает внут­ри себя поля тяготения. Но Кулон измерил обратную квадра­тичную зависимость только через 18 лет, а закон Гаусса появился на свет и того позже.

Фиг. 5.10. Внутри замкну­той проводящей оболочки электрическое поле равно нулю.

Закон Гаусса был про­верен очень тщательно; для этого электрометр помещали внутрь большой сферы и наблюдали, отклонится ли стрелка, когда сферу зарядят до высокого напряжения. Результат всегда получался отрицательным. Если знать геометрию аппарата и чув­ствительность прибора, можно рассчитать наименьшее поле, которое еще доступно наблю­дению. Из этого числа можно установить верхний предел отклонения показателя степени от двух. Если записать зависи­мость электростатической силы от расстояния в виде r-2+e, то можно определить верхнюю границу e. Этим способом Максвелл узнал, что e меньше 1/10000. Опыт был повторен и усовершен­ствован в 1936 г. Плимптоном и Лафтоном. Они обнаружили, что кулонов показатель отличается от 2 меньше чем на одну миллиардную.

Это подводит нас к интересному вопросу: как точно выполня­ется закон Кулона в различных обстоятельствах? В только что описанных опытах измерялась зависимость поля от расстояния на расстояниях порядка десятков сантиметров. А что можно сказать о внутриатомных расстояниях, скажем внутри атома водорода, где, как мы считаем, электрон притягивается к ядру по тому же закону обратных квадратов? Конечно, для описа­ния механической части поведения электрона нужна кванто­вая механика, но сила здесь — по-прежнему привычная элект­ростатическая сила. В постановке задачи об атоме водорода известна потенциальная энергия электрона как функция рас­стояния от ядра, и тогда закон Кулона приводит к потенциалу, обратно пропорциональному первой степени расстояния. С ка­кой точностью этот показатель известен на таких малых расстоя­ниях? В итоге очень тщательных измерений относительного расположения уровней энергии водорода, проведенных в 1947 г. Лэмбом и Ризерфордом, нам теперь известно, что и на расстоя­ниях порядка атомных, т. е. порядка ангстрема (10-8см), пока­затель выдерживается с точностью до одной миллиардной.

Такая точность измерений Лэмба и Ризерфорда оказалась возможной опять благодаря одной физической «случайности». Среди состояний атома водорода есть два таких, у которых энер­гии должны быть почти одинаковыми лишь в том случае, если потенциал меняется точно по закону 1/r. Измерялась очень ма­лая разница в энергиях по частоте w фотонов, испускаемых или поглощаемых при переходах из одного состояния в другое (сог­ласно формуле DE=hw). Расчеты показали, что DЁ заметно отличалась бы от наблюдавшегося значения, если бы показатель степени в законе силы 1/г2 отличался бы от 2 только на одну миллиардную.

А верен ли этот закон и на еще меньших расстояниях? В ядер­ной физике измерения показали, что на типично ядерных рас­стояниях (порядка 10-13 см) существуют электростатические силы и что меняются они все еще как обратные квадраты расстоя­ний. Одно из свидетельств в пользу этого мы разберем в следую­щих главах. Мы уверены, таким образом, что закон Кулона еще выполняется и на расстояниях около 10-13 см.

А что можно сказать о расстоянии 10-14 см! Этот интервал исследовали, бомбардируя протоны очень энергичными элект­ронами и следя за тем, как они рассеиваются. Сегодняшние дан­ные указывают на то, что на этих расстояниях закон терпит крах. Электрические силы на расстояниях меньше 10-14 см оказываются чуть ли не в 10 раз слабее. Этому есть два объясне­ния. То ли закон Кулона на таких маленьких расстояниях не действует, то ли эти тела (электроны и протоны) не являются точечными зарядами. Возможно, что один из них как-то размазан (а может, и оба). Большинство физиков предпочитают думать, что размазан заряд протона. Мы знаем, что протоны сильно взаимодействуют с мезонами. Это означает, что протон время от времени существует в виде нейтрона с p+ - мезоном вокруг. Такое расположение в среднем выглядело бы как небольшой шарик положительного заряда. А мы знаем, что нельзя считать поле шара зарядов меняющимся вплоть до самого центра по закону 1/r2. Вполне вероятно, что заряд протона размазан, но теория пионов еще очень несовершенна, и не исключено, что и закон Кулона на малых расстояниях отказывает. Вопрос пока остается открытым.