Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем небольшой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверхности проводника равно
Вне проводника:
(5.8)
Фиг. 5.11. Электрическое поле у самой внешней поверхности проводника пропорционально локальной поверхностной плотности заряда.
1 — гауссова поверхность; 2 — локальная плотность поверхностного заряда.s.
Почему слой зарядов на проводнике создает не такое поле, как слой зарядов сам по себе! Иначе говоря, почему (5.8) вдвое больше (5.3)? Но ведь мы не утверждали, будто в проводнике нет больше никаких «других» зарядов. В действительности для того, чтобы в проводнике Е было равно 0, в нем обязательно должны присутствовать какие-то заряды. В непосредственной близости от точки Р на поверхности заряды действительно создают поле Eлок=sлок/2e0 как внутри, так и снаружи поверхности. Но все прочие заряды проводника сообща «устраивают заговор», чтобы создать в точке Р добавочное поле, равное по величине Елок. Суммарное внутреннее поле обращается в нуль, а наружное удваивается: 2Eлок=s/e0.
§ 10. Поле внутри полости проводника
Вернемся теперь к проблеме пустотелого резервуара — проводника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то поля в ней быть не может, какова бы ни была форма проводника или полости (фиг. 5.12). Рассмотрим гауссову поверхность, подобную S на фиг. 5.12, которая окружает собой полость, но остается всюду в веществе проводника. Всюду на поверхности S поле равно нулю, так что потока сквозь S быть не может, и суммарный заряд внутри S должен быть равен нулю. Затем можно вывести из симметрии, что на внутренней поверхности сферической оболочки нет никакого заряда. Но в более общем случае мы только можем сказать, что на внутренней поверхности проводника имеется равное количество положительного и отрицательного зарядов. Может быть, окажется, что на одной части имеется положительный заряд, а где-то в другом месте — отрицательный (см. фиг. 5.12)? Такие вещи законом Гаусса не исключаются.
Фиг. 5.12. Чему равно поле в пустой полости проводника произвольной формы?
На самом деле, конечно, получается, что равные, но противоположные заряды на внутренней поверхности должны были бы соскользнуть навстречу друг другу и уничтожить друг друга. Мы можем убедиться в том, что они уничтожат друг друга, применив закон о равенстве нулю циркуляции Е (электростатику). Пусть на каких-то частях внутренней поверхности оказались заряды. Мы знаем, что еще где-то должно присутствовать равное количество противоположных зарядов. Но любые линии поля Е начинаются на положительных зарядах и кончаются на отрицательных (мы рассматриваем случай, когда свободных зарядов в полости нет). Представим себе теперь контур Г, пересекающий полость вдоль линии силы от какого-то положительного заряда к какому-то отрицательному и возвращающийся к исходной точке по телу проводника (см. фиг. 5.12). Интеграл вдоль такой линии сил в пределах от положительного до отрицательного заряда не был бы равен нулю, а интеграл по пути через металл
равен нулю, так как там Е = 0. Так что мы бы имели
Но криволинейный интеграл от Е по любому замкнутому контуру в электростатическом поле всегда равен нулю. Значит, внутри пустой полости не может быть никаких полей, равно как не может быть никаких зарядов на внутренней поверхности.
Заметьте, что мы все время подчеркивали, что полость пуста. Если поместить какие-то заряды в фиксированных местах полости (скажем, на изоляторе или на небольшом проводнике, изолированном от основного), то внутри полости могут быть поля. Но тогда она уже не будет «пустой».
Мы показали, что если полость целиком окружена проводником, то никакое статическое распределение зарядов снаружи никогда не создаст поля внутри. Это объясняет принцип «защиты» электрического оборудования, которое помещается в металлическую коробку. К тем же рассуждениям можно прибегнуть, если нужно показать, что никакое статическое распределение зарядов внутри замкнутого сплошного проводника не может создать поля вне его. Защита действует в обе стороны! В электростатике (но не в изменяющихся полях) поля по обе стороны сплошной проводящей оболочки полностью не зависят одно от другого.