Выбрать главу

Теперь вы понимаете, почему удалось проверить закон Ку­лона с такой точностью. Форма полой оболочки не имела зна­чения. Она вовсе не должна была быть круглой, она могла быть и кубом! Если закон Гаусса точен, то поле внутри всегда равно нулю. Вы понимаете теперь, почему вполне безопасно сидеть внутри высоковольтного генератора Ван-де-Граафа в миллион вольт, не боясь, что вас ударит ток, — Вас охраняет сам Гаусс!

Глава 6

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ

§1.Уравнения электростатиче­ского потенциала

§2.Электрический диполь

§3.3амечания о векторных уравнениях

§4.Дипольный потенциал как градиент

§5.Дипольное приближение для произвольного распределения

§6.Поля заряженных проводников

§7. Метод изображений

§8.Точечный заряд у проводящей плоскости

§9.Точечный заряд у проводящей сферы

§10.Конденеаторы; параллельные пластины

§11.Пробой при высоком напряжении

§12.Ионный микроскоп

Повторить: гл. 23 (вып. 2) «Резонанс»

§ 1. Уравнения электростатического потенциала

В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятель­ствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математи­ческими методами, используемыми для опреде­ления поля.

Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:

(6.1)

(6.2)

Фактически оба эти уравнения можно объ­единить в одно. Из второго уравнения сразу же следует, что поле может считаться гра­диентом некоего скаляра (см. гл. 3, § 7):

(6.3)

Электрическое поле каждого частного ви­да можно, если нужно, полностью описать с помощью потенциала поля j. Дифферен­циальное уравнение, которому должно удо­влетворять j, получится, если (6.3) подста­вить в (6.1):

(6.4)

Расходимость градиента j—это то же, что С2, действующее на j:

(6.5)

так что уравнение (6.4) мы запишем в виде

(6.6)

Оператор С2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с мате­матической точки зрения заключается просто в изучении реше­ний одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).

Обратимся сперва к особому классу задач, в которых r задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если r в каждой точке известно, то потенциал в точке (1) равен

(6.7)

где r(2) — плотность заряда, dV2 — элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решение диф­ференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:

и (6.7) является прототипом решения любой такой задачи.

Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех за­рядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.

§ 2. Электрический диполь

Сначала возьмем два точечных заряда +q и -q, разделенных промежутком d. Проведем ось z через заряды, а начало коор­динат поместим посредине между ними (фиг. 6.1). Тогда по фор­муле (4.24) потенциал системы двух зарядов дается выраже­нием

Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.