Выбрать главу

Как же решить эту задачу? Она похожа на задачу по электро­статике, в которой имеются два материала с разной диэлектри­ческой проницаемостью x по обе стороны от разделяющей их границы. Здесь что-то есть! Возможно, это похоже на точечный заряд вблизи границы между диэлектриком и проводником или что-нибудь вроде этого. Посмотрим, что происходит вблизи границы. Физическое условие состоит в том, что нормальная составляющая h на поверхности равна нулю, поскольку мы предположили, что потока из блока нет. Мы должны задать вопрос: в какой электростатической задаче возникает условие, что нормальная компонента электрического поля Е (представ­ляющая собой аналог h) равна нулю у поверхности? Нет такой!

Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть опре­деленные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализи­ровали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд реше­ний, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же методы. Попробуем вообразить, что произошло бы, если бы диэлектри­ческая проницаемость была равна нулю. (Разумеется, в реаль­ных условиях диэлектрическая проницаемость никогда не обра­щается в нуль. Но может представиться случай, когда вещество имеет очень большую диэлектрическую проницаемость, так что диэлектрической проницаемостью воздуха вне среды можно пренебречь.)

Как же найти электрическое поле, у которого нет составляю­щей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду касательно к поверхности? Вы заметите, что эта задача обратна задаче о точечном заряде вблизи прово­дящей плоскости. Там нам нужно было поле, перпендикулярное

к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.

В задаче об электрическом поле мы придумали решение, вообразив за проводящей плоскостью точечный заряд. Можно воспользоваться снова этой же идеей. Попытаемся выбрать такое «изображение» источника, которое автоматически обраща­ло бы в нуль нормальную компоненту поля вблизи поверхности. Решение показано на фиг. 12.2. Электрическое изображение источника с тем же знаком и той же величины, находящееся на расстоянии а над поверхностью, дает поле, горизонтальное повсюду у поверхности. Нормальные компоненты от обоих ис­точников взаимно уничтожаются.

Итак, наша задача о потоке тепла решена. Температура во всем пространстве одинакова по непосредственной аналогии с потенциалом от двух одинаковых точечных зарядов. Темпера­тура Т на расстоянии r от одного точечного источника G в бес­конечной среде равна

(12.13)

(Это, конечно, полностью аналогично j= q/4pe0r.) Температура точечного источника и, кроме того, его изображения равна

(12.14)

Эта формула дает нам температуру всюду внутри блока. Несколько изотермических поверхностей приведено на фиг. 12.2.

Показаны также линии h, ко­торые можно получить из вы­ражения h =-КСТ.

В самом начале мы инте­ресовались распределением температуры на поверхности. Для точки на поверхности находящейся на расстоянии р от оси, r1=r2=Ц (р2 + а2),

Фиг. 12.2. Поток тепла и изотерма у точечного источника тепла, расположенного на расстоя­нии а под поверхностью тела с хорошей теплопроводностью. Вне тела показано мнимое изображение источника.

сле­довательно,

(12.15)

Эта функция также изображена на фиг. 12.2. Естественно, что температура прямо над источником выше, чем вдали от него. Такого рода задачи часто приходится решать геофизикам. Теперь мы видим, что это те же самые задачи, которые мы ре­шали в электричестве.