Выбрать главу

Как и раньше, получаем

В только что разобранном примере мы вычисляем вектор­ный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.

§ 2. Векторный потенциал заданных токов

Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):

откуда, конечно, следует

Это уравнение для магнитостатики; оно похоже на уравнение

(14.13)

для электростатики.

Наше уравнение (14.12) для векторного потенциала ста­нет еще более похожим на уравнение для j, если перепи­сать СX(СX А), используя векторное тождество [см. уравне­ние (2.58) стр. 44]

(14.14)

Поскольку мы выбрали С·А=0 (и теперь вы видите, по­чему), уравнение (14.12) приобретает вид

(14.15)

Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.

Это векторное уравнение, конечно, распадается на три урав­нения

и каждое из этих уравнений математически идентично уравнению

(14.17)

Все, что мы узнали о нахождении потенциала для извест­ного r, можно использовать для нахождения каждой компо­ненты А, когда известно j!

В гл. 4 мы видели, что общее решение уравнения элект­ростатики (14.17) имеет вид

Тогда мы немедленно получаем общее решение для Аx:

(14.18)

и аналогично для Ау и Az. (Фиг. 14.2 напоминает вам о при­нятых нами обозначениях для r12 и dV2.) Мы можем объ­единить все три решения в векторной форме:

(14.19)

(Вы можете при желании проверить прямым дифференцирова­нием компонент, что этот интеграл удовлетворяет С·А=0, поскольку С·j=0, а последнее, как мы видели, должно вы­полняться для постоянных токов.)

Мы имеем, таким образом, общий метод вычисления маг­нитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал j, который был бы создан плотностью зарядов р, равной jx/c2, и ана­логично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компо­нента А не связана таким же образом с «радиальной» компонен­той j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую ком­поненту А, решая три воображаемые электростатические зада­чи для распределений заряда r1=jx2, r2=jу2 и r3=jz2. Затем мы находим В, вычислив разные производные от А, входящие в ухА. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.

§ 3. Прямой провод

В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, поль­зуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоян­ный ток I. В отличие от заряда в проводнике в случае электро­статики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту. По величине она равна

(14.20)

внутри провода и нулю вне его.

Поскольку jх и jy оба равны нулю, то сразу же получим

Ах = 0, Ау = 0.

Чтобы получить Аг, мож­но использовать наше ре­шение для электростати­ческого потенциала j от провода с однородной плотностью заряда r=/г2.

Фиг. 14.3. Длинный цилинд­рический провод с однородной плотностью тока j, направлен­ный вдоль оси z.