Как и раньше, получаем
В только что разобранном примере мы вычисляем векторный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.
§ 2. Векторный потенциал заданных токов
Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):
откуда, конечно, следует
Это уравнение для магнитостатики; оно похоже на уравнение
(14.13)
для электростатики.
Наше уравнение (14.12) для векторного потенциала станет еще более похожим на уравнение для j, если переписать СX(СX А), используя векторное тождество [см. уравнение (2.58) стр. 44]
(14.14)
Поскольку мы выбрали С·А=0 (и теперь вы видите, почему), уравнение (14.12) приобретает вид
(14.15)
Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.
Это векторное уравнение, конечно, распадается на три уравнения
и каждое из этих уравнений математически идентично уравнению
(14.17)
Все, что мы узнали о нахождении потенциала для известного r, можно использовать для нахождения каждой компоненты А, когда известно j!
В гл. 4 мы видели, что общее решение уравнения электростатики (14.17) имеет вид
Тогда мы немедленно получаем общее решение для Аx:
(14.18)
и аналогично для Ау и Az. (Фиг. 14.2 напоминает вам о принятых нами обозначениях для r12 и dV2.) Мы можем объединить все три решения в векторной форме:
(14.19)
(Вы можете при желании проверить прямым дифференцированием компонент, что этот интеграл удовлетворяет С·А=0, поскольку С·j=0, а последнее, как мы видели, должно выполняться для постоянных токов.)
Мы имеем, таким образом, общий метод вычисления магнитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал j, который был бы создан плотностью зарядов р, равной jx/c2, и аналогично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компонента А не связана таким же образом с «радиальной» компонентой j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую компоненту А, решая три воображаемые электростатические задачи для распределений заряда r1=jx/с2, r2=jу/с2 и r3=jz/с2. Затем мы находим В, вычислив разные производные от А, входящие в ухА. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.
§ 3. Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, пользуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоянный ток I. В отличие от заряда в проводнике в случае электростатики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту. По величине она равна
(14.20)
внутри провода и нулю вне его.
Поскольку jх и jy оба равны нулю, то сразу же получим
Ах = 0, Ау = 0.
Чтобы получить Аг, можно использовать наше решение для электростатического потенциала j от провода с однородной плотностью заряда r=/г/с2.
Фиг. 14.3. Длинный цилиндрический провод с однородной плотностью тока j, направленный вдоль оси z.