В частности, если ток в отдельной катушке (или в любом проводе) меняется, возникает «обратная» э. д. с. в цепи. Эта э. д. с. действует на заряды, текущие в катушке а на фиг. 16.5, препятствуя изменению магнитного поля, и поэтому направлена так, чтобы препятствовать изменению тока. Она стремится сохранить ток постоянным; э. д. с. противоположна току, когда ток увеличивается, и направлена по току, когда он уменьшается. При самоиндукции ток обладает «инерцией», потому что эффекты индукции стремятся сохранить поток постоянным точно так же, как механическая инерция стремится сохранить скорость тела неизменной.
Любой большой электромагнит обладает большой самоиндукцией. Пусть, например, к катушке большого электромагнита присоединена батарея (фиг. 16.6) и пусть установилось большое магнитное поле. (Ток достигает постоянной величины, определяемой напряжением батареи и сопротивлением провода катушки.)
Фиг. 16.6. Включение электромагнита в цепь.
Лампочка открывает проход току в момент отключения, препятствуя возникновению слишком большой э.д.с. на контактом выключателя.
Но теперь предположим, что мы пытаемся отсоединить батарею, разомкнув выключатель. Если бы мы на самом деле разорвали цепь, ток быстро уменьшился бы до нуля и в процессе уменьшения создал бы огромную э. д. с. В большинстве случаев такой э. д. с. оказывается вполне достаточно, чтобы образовалась вольтова дуга между разомкнутыми контактами выключателя. Возникающее большое напряжение могло бы нанести вред катушке, да и вам, если бы именно вы размыкали выключатель! По этим причинам электромагниты обычно включают в цепь примерно так, как показано на фиг. 16.6. Когда переключатель разомкнут, ток не меняется быстро, а продолжает течь через лампу, оставаясь постоянным за счет э. д. с. от самоиндукции катушки.
§ 3. Силы, действующие на индуцируемые токи
Вы, вероятно, наблюдали великолепную демонстрацию правила Ленца с помощью приспособления, изображенного на фиг. 16.7. Это электромагнит точно такой же, как катушка а на фиг. 16.5. На одном конце электромагнита помещается алюминиевое кольцо. Если с помощью переключателя подсоединить катушку к генератору переменного тока, то кольцо взлетает в воздух. Силу, конечно, порождают токи, индуцируемые в кольце. Тот факт, что кольцо отлетает прочь, показывает, что токи в нем препятствуют изменению поля, проходящего через кольцо. Когда у магнита северный полюс находится сверху, индуцированный ток в кольце создает внизу северный полюс. Кольцо и катушка отталкиваются точно так же, как два магнита, приложенные одинаковыми полюсами. Если в кольце сделать тонкий разрез по радиусу, сила исчезает — убедительное доказательство того, что она действительно обусловлена токами в кольце.
Фиг. 16.7. Проводящее кольцо сильно отталкивается электромагнитом, когда в нем меняется ток.
Фиг. 16.8. Электромагнит вблизи идеально проводящей плоскости.
Если вместо кольца у края электромагнита поместить алюминиевый или медный диск, то и он отталкивается; индуцированные токи циркулируют в материале диска и снова вызывают отталкивание.
Интересный эффект, в основе похожий на предыдущий, возникает с листом идеального проводника. В «идеальном проводнике» ток совсем не встречает сопротивления. Поэтому возникшие в нем токи могут течь не переставая. Фактически малейшая э. д. с. создала бы сколь угодно большой ток, а это на самом деле означает, что в нем вообще не может быть э. д. с. Любая попытка создать магнитный поток, проходящий сквозь такой лист, вызовет токи, образующие противоположно направленные поля В — все со сколь угодно малыми э. д. с., так что никакого потока не будет.
Если к листу идеального проводника мы поднесем электромагнит, то при включении тока в магните в листе возникают токи (называемые вихревыми токами), и никакой магнитный поток не пройдет. Линии поля будут иметь вид, показанный на фиг. 16.8. То же самое произойдет, если к идеальному проводнику поднести постоянный магнит. Поскольку вихревые токи создают противоположные поля, магниты от проводника отталкиваются. Поэтому оказывается возможным подвесить постоянный магнит в воздухе над листом идеального проводника, изготовленного в форме тарелки (фиг. 16.9). Магнит будет поддерживаться в воздухе за счет отталкивания индуцированных вихревых токов в идеальном проводнике. При обычных температурах идеальных проводников не существует, но некоторые материалы при достаточно низких температурах становятся идеальными проводниками.
Фиг. 16.9. Магнитная палочка отталкивается вихревыми токами и повисает над чашей из сверхпроводника.
Так, при температуре ниже 3,8° К олово становится идеальным проводником; тогда оно называется сверхпроводником.
Если проводник, показанный на фиг. 16.8, не вполне идеальный, то возникнет некоторое сопротивление течению вихревых токов. Токи будут постепенно замирать, и магнит медленно опустится. В неидеальном проводнике, чтобы течь дальше, вихревым токам необходима некоторая э. д. с., а для возникновения э. д. с. поток должен непрерывно меняться. Поток магнитного поля постепенно проникает в проводник.
В обычном проводнике имеются не только силы отталкивания за счет вихревых токов, но могут быть и боковые силы. Например, если мы передвигаем магнит над проводящей поверхностью, вихревые токи создают тормозящую силу, потому что индуцированные токи препятствуют изменению потока. Такие силы пропорциональны скорости и похожи на силы вязкости.
Эти эффекты хорошо наблюдаются на приборе, изображенном на фиг. 16.10. Квадратная медная пластинка укреплена на конце стержня, образуя маятник. Пластинка качается взад и вперед между полюсами электромагнита. Когда магнит включается, движение маятника неожиданно прекращается. Как только металлическая пластинка попадает в зазор магнита, в ней индуцируется ток, который стремится помешать изменению потока через пластинку. Если бы пластинка была идеальным проводником, токи были бы столь велики, что они снова вытолкнули бы пластинку и она отскочила бы назад. В медной же пластинке имеется некоторое сопротивление, поэтому токи' сначала заставляют пластинку почти намертво застыть, когда она начинает входить в поле. Затем, по мере того как токи замирают, пластинка продолжает медленно двигаться в магнитном; поле и останавливается совсем.
Схема вихревых токов в медном маятнике поясняется фиг. 16.11. Сила и расположение токов весьма чувствительны к форме пластинки. Если, скажем, вместо медной пластинки взять другую, в которой имеется ряд узких щелей (фиг. 16.12), то эффекты вихревых токов сильно уменьшатся. Маятник проходит сквозь магнитное поле лишь с небольшой тормозящей силой