Выбрать главу

Подставляя вместо e ее выражение через токи из (17.34), имеем

(17.38)

Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток (что должно равняться накоп­ленной энергии U), равна

(17.37)

Поэтому энергия, накопленная в индуктивности, равна 1/2ж I2.Применяя те же рассуждения к паре катушек, изображен­ных на фиг. 17.8 или 17.9, мы можем показать, что полная электрическая энергия системы дается выражением

(17.38)

В самом деле, начиная с тока I=0 в обеих катушках, можно вна­чале включить ток I1 в катушке 1, оставляя I2=0. Совершен­ная работа как раз равна l/2ж 1l12. Но теперь, включая I2, мы совершаем не только работу 1/2ж 2I22 против э. д. с. в цепи 2, но еще и добавочное количество работы —m I1I2, которая есть интеграл

от э. д. с. m(dIz/dt) в цепи 1, умноженный на теперь уже постоянный ток I1 в этой цепи.

Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I1 и I2. Прежде всего мы мог­ли бы использовать принцип виртуальной работы, взяв вари­ацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индук­ции m. Тогда мы могли бы записать уравнение виртуальной работы в виде

Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоян­ными значения токов I1и I2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации инду­цированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной рабо­ты, помня, что полная энергия — это взятая с обратным знаком энергия Uмех (то что мы называем «механической энергией»). Поэтому силу можно записать в виде

(17.39)

Тогда сила между катушками дается выражением

Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициен­тами самоиндукции ж 1 и ж 2двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно воз­растут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с

таким же успехом записать в следующей форме:

(17.40)

Это просто алгебраическое преобразование. Эта величина долж­на быть всегда положительна при любых значениях I1 и I2. В частности, она должна быть положительна, когда I2 вдруг примет особое значение:

(17.41)

Но при таком значении I2 первое слагаемое в (17.40) равно ну­лю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что

Таким образом, мы доказали общее соотношение, что величина взаимной индукции m любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициен­тов самоиндукции (сам m может быть положителен или отри­цателен в зависимости от выбора знаков для токов It и I2):

(17.42)

Соотношение между mи коэффициентами самоиндукции обычно записывают в виде

(17.43)

Постоянную k называют коэффициентом связи. Если большая часть потока от одной катушки проходит через другую ка­тушку, то коэффициент связи близок к единице; мы говорим, что катушки «сильно связаны». Если катушки значительно удалены друг от друга или же все устроено так, что взаимное проникновение их потоков очень мало, коэффициент связи становится близок к нулю, а коэффициент взаимной индукции очень мал.

Для вычисления взаимной индукции двух катушек мы дали формулу (17.30), которая представляет собой двойной кон­турный интеграл по обеим цепям. Мы могли бы подумать, что та же формула применима и для вывода коэффициента самоин­дукции одной катушки, если оба контурных интегрирования проводить по одной и той же катушке. Однако это не так, пото­му что при интегрировании по двум катушкам знаменатель r12 под знаком интеграла стремится к нулю, когда два элемента длины находятся в одной точке. Коэффициент самоиндукции, получаемый из этой формулы, оказывается бесконечным. Про­исходит это потому, что формула наша — приближенная, и справедлива она только для поперечных сечений проводов в обеих цепях, малых по сравнению с расстоянием от одной цепи до другой. Ясно, что это приближение для отдельной катушки не годится. На самом деле оказывается, что индуктивность от­дельной катушки стремится логарифмически к бесконечности, когда диаметр ее проволоки становится все меньше и меньше.

Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнит­ную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов:

(17.44)

Если известно распределение плотности тока j, то можно вы­числить векторный потенциал А, а затем, оценив интеграл (17.44), получить энергию. Эта энергия равна магнитной энер­гии самоиндукции, l/2ж I2. Приравнивая их, получаем формулу для индуктивности:

(17.45)

Мы, конечно, ожидаем, что индуктивность есть число, зависящее только от геометрии цепи, а не от тока / в цепи. Формула (17.45) действительно приводит к такому результату, потому что ин­теграл в ней пропорционален квадрату тока — ток входит один раз от j и еще раз от векторного потенциала А. Интеграл, деленный на I2, зависит от геометрии цепи, но не от тока I.

Выражению (17.44) для энергии распределения токов можно придать совсем другую форму, иногда более удобную для вы­числений. Кроме того, как мы увидим позже, именно эта форма важна, потому что она справедлива в более общем случае. В формуле (17.44) и А и j можно связать с В, поэтому можно надеяться, что энергия выразится через магнитное поле — точно так же, как нам удалось связать электростатическую энергию с электрическим полем. Начнем с подстановки e0c2СXВ вместо j. Заменить А мы не можем с той же легкостью, потому что нельзя обратить B=СXA, чтобы выразить А через В. Можно только