Выбрать главу

Если петля «узкая», т. е. если В2и В1не очень различаются между собой, то можно было бы написать

Так что сила была бы равна

(15.10)

Вся работа, произведенная внешними силами над петлей, рав­нялась бы

а это опять -mВ. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из

Другой наш результат состоит в следующем. Хоть и не исклю­чено, что не все виды энергии вошли в формулу Uмех= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.

§ 2. Механическая и электрическая энергии

Теперь мы хотим пояснить, почему энергия Uмех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчерк­нули, что ею можно пользоваться как энергией, когда вычис­ляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.

Представим, что петля на фиг. 15.2 движется в направлении +х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости vyв том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет произво­диться работа Fyvy , где vyкомпонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электриче­ская работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрица­тельная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли Uмех в (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.

Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть мо­жет, если бы провод двигался достаточно медленно, этой элект­рической энергией можно было бы вообще пренебречь. Дейст­вительно, скорость, с какой высвобождается электрическая энер­гия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произве­дению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.

Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и маг­нитному полю В со скоростью v;провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейфвдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф = (qevпроводВ)vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:

Но Nqеvдрейф равно току I в проводе, так что

И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.

Но заметьте, что сила, действующая на провод, равна IB; значит, IBvпровод — это механическая работа, выполняемая над проводом в единицу времени, dUмех/dt = IBvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!

Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из заря­дов в проводе, равна

Скорость, с которой производится работа, равна

(15.12)

Если электрического поля нет, то остается только второе слага­емое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рас­суждения применимы лишь к проводам в постоянных магнит­ных полях.

Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших рассуждениях.

Но представим себе полную систему, наподобие изображен­ной на фиг. 15.3,а, где петля с током I вдвигается в магнитное поле B1 созданное током I2 в катушке. ТокI1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.

Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относи­тельности.

Фиг. 15.3. Вычисление энергии маленькой петли в магнитном поле.

Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противо­положна по знаку произведенной механической работе. Иначе говоря,

Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, создан­ном петлей. Те же рассуждения приведут к выражению