Выбрать главу

произведению 1/e0 на заряд Q на одной из пластин конденсатора. Мы имеем

(18.9)

Это очень хорошо. Результат тот же, что мы нашли в (18.8). Интегрирование по меняющемуся электрическому полю 'дает то же магнитное поле, что и интегрирование по току в проводе. Конечно, как раз об этом и говорит уравнение Максвелла. Легко видеть, что так должно быть всегда, если применить наши рас­суждения к двум поверхностям 81и S'1, ограниченным одной и той же окружностью Г1 на фиг. 18.2, б. Сквозь S1проходит ток /, но нет электрического потока. Сквозь S1нет тока, но есть электрический поток, меняющийся со скоростью I/e0. То же поле В получится, если мы применим уравнение IV (табл. 18.1) к каждой поверхности.

Из нашего обсуждения добавки, введенной Максвеллом, у вас могло сложиться впечатление, что она добавляет немного — просто подправляет уравнения в согласии с тем, что мы уже ожидали. Это верно, пока мы рассматриваем уравнение IV само по себе, ничего особенно нового не появляется. Слова само по себе, однако, весьма важны. Небольшое изменение, введенное Максвеллом в уравнение IV в сочетании с другими уравнениями, на самом деле дает много нового и важного. Но прежде чем заняться этим вопросом, поговорим подробнее в табл. 18.1.

§ 3. Все о классической физике

В табл. 18.1 сведено все, что знала фундаментальная клас­сическая, физика, т. е. та физика, которая была известна до 1905 г. В одной этой таблице есть все. С помощью этих уравне­ний можно понять все достижения классической физики.

Прежде всего, мы имеем уравнения Максвелла, записанные как в расширенном виде, так и в короткой математической фор­ме. Затем есть сохранение заряда, которое даже записано в скобках, потому что сохранение заряда можно вывести из имеющихся полных уравнений Максвелла. Так что в таблице имеются даже небольшие излишки. Дальше мы записали закон для силы, поскольку все имеющиеся электрические и магнитные поля ничего не говорят нам до тех пор, пока мы не знаем, как они действуют на заряды. Однако, зная Е и В, мы можем найти силу, действующую на объект с зарядом q, который дви­жется со скоростью v. Наконец, имеющаяся сила ничего не говорит нам, пока мы не знаем, что происходит, когда сила ускоряет что-то; нам необходимо знать закон движения, кото­рый говорит, что сила равна скорости изменения импульса. {Помните? Об этом говорилось в начале курса.) Мы даже вклю­чили эффекты теории относительности, записав импульс в виде р=m0vЦ(1-v2/c2).

Но если мы действительно хотим законченности, нам сле­дует добавить еще один закон — закон тяготения Ньютона? и мы поставили его в конце.

Итак, в одной небольшой таблице мы собрали все фундамен­тальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это вели­кий момент. Мы покорили большую высоту. Мы на вершине К-2, мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.

В основном мы пытались научиться понимать эти уравнения. А теперь, когда мы собрали их воедино, мы собираемся разо­браться, что означают эти уравнения, что нового скажут они о том, чего мы еще не поняли. Мы много потрудились, чтобы вскарабкаться к этой точке. Это потребовало больших усилий, а теперь мы собираемся начать приятное путешествие — спуск с горы в долину, там мы увидим все, чего мы достигли.

§ 4. Передвигающееся поле

А теперь о новых следствиях. Они возникают из сопоставле­ния всех уравнений Максвелла. Сначала давайте посмотрим, что произошло бы в особенно простом случае. Предположим, что изменяется только одна координата у всех величин, т. е. рассмотрим задачу одного измерения.

Случай этот показан на фиг. 18.3. Перед нами заряженный лист, помещенный на плоскости yz. Сначала он неподвижен, а затем мгновенно приобретает скорость и в направлении у и движется с этой постоянной скоростью. Вас может беспокоить присутствие такого «бесконечного» ускорения, но фактически это не имеет значения; просто представьте себе, что скорость достигает значения и очень быстро. Итак, мы внезапно полу­чаем поверхностный ток J (J — ток на единицу ширины в z-направлении). Чтобы упростить проблему, предположим, что имеется еще неподвижный лист, заряженный противоположно и наложенный на плоскость yz, так что электростатические эф­фекты отсутствуют.

Фиг. 18.3. Бесконечная заряженная плоскость неожи­данно приводится в поступательное движение.

Возникают магнитное и электрическое поля, распространяю­щиеся от плоскости с постоянной скоростью.

Представим себе также (хотя на фигуре мы показали лишь то, что происходит в конечной области), что лист простирается до бесконечности в направлениях ±у и ±z. Другими словами, здесь мы имеем случай, когда тока нет, а затем внезапно появляется однородный лист с током. Что же произойдет?

Мы знаем, что, когда имеется лист с током в положительном y-направлении, возникнет магнитное поле, направленное в отрицательном z-направлении при х>0 и в положительном z-направлении при х<0. Мы могли бы найти величину В, используя тот факт, что контурный интеграл от магнитного поля будет равен току на e0с2. Мы получили бы, что В-J/2e0с2 (поскольку ток I в полосе шириной w равен Jw, а контурный интеграл от В есть 2Вw).

Так мы определяем поле вблизи листа для малых значений х, но, поскольку мы считаем лист бесконечным, хотелось бы получить с помощью тех же рассуждений магнитное поле подальше (для больших значений х). Однако это означало бы, что в момент, когда мы включаем ток, магнитное поле внезапно изменяется повсюду от нуля до конечной величины. Но погодите! При внезапном изменении магнитного поля возникают огром­ные электрические эффекты. (Как бы оно ни менялось, электри­ческие эффекты возникнут.) Так что в результате движения за­ряженного листа создается меняющееся магнитное поле и, следовательно, должны возникнуть электрические эффекты.

Фиг. 18.4. Зависимость вели­чины В (или E) от х. а — спустя время t после начала движения заряженной плоскости; б — поля от заряженной плоскости, начавшей двигаться в момент t= Т в сторону отрицательных у; в сумма а и б.

Если электрические поля образовались, они должны начинаться с нуля и меняться к какому-то значению. Возникнет некая производная dE/dt, которая будет вносить вклад вместе с током J в создание магнитного поля. Так разные уравнения зацеп­ляются друг за друга, и мы должны попытаться найти решения для всех полей сразу.

Рассматривая уравнения Максвелла порознь, нелегко сразу получить решение. Поэтому сначала мы сообщим вам ответ, а затем уже проверим, действительно ли оно удовлетворяет уравнениям. Ответ: Поле В, которое мы вычислили, на самом деле создается прямо вблизи листа с током (для малых х). Так и должно быть, потому что если мы проведем крошечную петлю вокруг листа, то в ней не будет места для прохождения электрического потока. Но поле В подальше (для больших х) сначала равно нулю. Оно в течение некоторого времени остается нулевым, а затем внезапно включается. Короче говоря, мы включаем ток и не­медленно вблизи него включается магнитное поле с постоян­ным значением В; затем включенное поле В распространяется от области источника. Через некоторое время появляется одно­родное магнитное поле всюду, вплоть до некоторого значения х, а за ним оно равно нулю. Вследствие симметрии оно распространяется как в положительном, так и в отрицательном x-направлении.