Выбрать главу

Включить в рассмотрение векторный потенциал А намного труднее. Вариации тогда становятся несравненно более слож­ными. Но в конце сила оказывается равной тому, чему следует: q(E+vXB). Но позабавьтесь с этим сами.

Мне хотелось бы подчеркнуть, что в общем случае (к при­меру, в релятивистской формуле) под интегралом в действии уже не стоит разность кинетической и потенциальной энергий. Это годилось только в нерелятивистском приближении. На­пример, член m0c2Ц(1-v22) — это не то, что называют кине­тической энергией. Вопрос о том, каким должно быть действие для произвольного частного случая, может быть решен после некоторого числа проб и ошибок. Это задача того же типа, что и определение, каковы должны быть уравнения движения. Вы просто должны поиграть с известными вам уравнениями и посмотреть, можно ли их написать в виде принципа наимень­шего действия.

Еще одно замечание по поводу терминологии. Ту функцию, которую интегрируют по времени, чтобы получить действие S, называют лагранжианом ж. Это функция, зависящая только от скоростей и положений частиц. Так что принцип наименьшего действия записывается также в виде

где под xiи viподразумеваются все компоненты координат и скоростей. Если вы когда-нибудь услышите, что кто-то говорит о «лагранжиане», знайте, что речь идет о функции, применяемой для получения S. Для релятивистского движения в электро­магнитном поле

Кроме того, я должен отметить, что самые дотошные и пе­дантичные люди не называют S действием. Его именуют «первой главной функцией Гамильтона». Но читать лекцию о «принципе наименьшей первой главной функции Гамильтона» было свыше моих сил. Я назвал это «действием». Да к тому же все больше и больше людей называют это «действием». Видите ли, истори­чески действием было названо нечто другое, не столь полезное для науки, но я думаю, что разумнее изменить определение. Теперь и вы начнете именовать новую функцию действием, а вскоре и все вообще станут называть ее этим простым именем.

Теперь я хочу сообщить вам по поводу нашей темы кое-что, похожее на те рассуждения, которые я вел по поводу принципа кратчайшего времени. Существует разница в самом существе закона, утверждающего, что некоторый интеграл, взятый от одной точки до другой, имеет минимум,— закона, который сообщает нам что-то обо всем пути сразу, и закона, который говорит, что когда вы двигаетесь, то, значит, есть сила, приво­дящая к ускорению. Второй подход докладывает вам о каждом вашем шаге, он прослеживает ваш путь пядь за пядью, а пер­вый выдает сразу какое-то общее утверждение обо всем прой­денном пути. Толкуя о свете, мы говорили о связи этих двух подходов. Теперь я хочу объяснить вам, отчего должны суще­ствовать дифференциальные законы, если имеется такой прин­цип — принцип наименьшего действия. Причина вот в чем: рассмотрим действительно пройденный в пространстве и вре­мени путь. Как и прежде, обойдемся одним измерением, так что можно будет начертить график зависимости xот t. Вдоль истинного пути S достигает минимума. Положим, что у нас есть этот путь и что он про­ходит через некоторую точку а пространства и времени и через другую соседнюю точку b.

Теперь, если весь интеграл от t1 до t2 достиг минимума, необ­ходимо, чтобы интеграл вдоль маленького участочка от а до b тоже был минимальным. Не может быть, чтобы часть от а до b хоть чуточку превосходила минимум. Иначе вы могли бы по­двигать туда-сюда кривую на этом участочке и снизить немного значение всего интеграла.

Значит, любая часть пути тоже должна давать минимум. И это справедливо для каких угодно маленьких долек пути. Поэтому тот принцип, что весь путь должен давать минимум, можно сформулировать, сказав, что бесконечно малая долька пути — это тоже такая кривая, на которой действие минималь­но. И если мы возьмем достаточно короткий отрезок пути — между очень близкими друг к другу точками а и b,— то уже неважно, как меняется потенциал от точки к точке вдали от этого места, потому что, проходя весь ваш коротенький отрезочек, вы почти не сходите с места. Единственное, что вам нужно учитывать,— это изменение первого порядка малости в потенциале. Ответ может зависеть только от производной по­тенциала, а не от потенциала в других местах. Так, утвержде­ние о свойстве всего пути в целом становится утверждением о том, что происходит на коротком участке пути, т. е. диф­ференциальным утверждением. И эта дифференциальная формулировка включает производные от потенциала, т. е. силу в данной точке. Таково качественное объяснение связи между законом в целом и дифференциальным законом.

Когда мы говорили о свете, то обсуждали также вопрос: как все-таки частица находит правильный путь? С дифферен­циальной точки зрения это понять легко. В каждый момент частица испытывает ускорение и знает только то, что ей поло­жено делать в это мгновение. Но все ваши инстинкты причин и следствий встают на дыбы, когда вы слышите, что частица «решает», какой ей выбрать путь, стремясь к минимуму дей­ствия. Уж не «обнюхивает» ли она соседние пути, прикидывая, к чему они приведут — к большему или к меньшему действию? Когда мы на пути света ставили экран так, чтобы фотоны не могли перепробовать все пути, мы выяснили, что они не могут решить, каким путем идти, и получили явление дифракции.

Но верно ли это и для механики? Правда ли, что частица не просто «идет верным путем», а пересматривает все другие мыслимые траектории? И что если, ставя преграды на ее пути, мы не дадим ей заглядывать вперед, то мы получим некий ана­лог явления дифракции? Самое чудесное во всем этом — то, что все действительно обстоит так. Именно это утверждают законы квантовой механики. Так что наш принцип наименьшего действия сформулирован не полностью. Он состоит не в том, что частица избирает путь наименьшего действия, а в том, что она «чует» все соседние пути и выбирает тот, вдоль которого действие минимально, и способ этого выбора сходен с тем, ка­ким свет отбирает кратчайшее время. Вы помните, что способ, каким свет отбирает кратчайшее время, таков: если свет пойдет по пути, требующему другого времени, то придет он с другой фазой. А полная амплитуда в некоторой точке есть сумма вкладов амплитуд для всех путей, по которым свет может ее достичь. Все те пути, у которых фазы резко различаются, ничего после сложения не дают. Но если вам удалось найти всю последовательность путей, фазы которых почти одинаковы, то мелкие вклады сложатся, и в точке прибытия полная ампли­туда получит заметное значение. Важнейшим путем становится тот, возле которого имеется множество близких путей, дающих ту же фазу.

В точности то же происходит и в квантовой механике. За­конченная квантовая механика (нерелятивистская и пренебре­гающая спином электрона) работает так: вероятность того, что частица, выйдя из точки 1 в момент t1, достигнет точки 2 в момент t2, равна квадрату амплитуды вероятности. Полная амплитуда может быть записана в виде суммы амплитуд для всех возможных путей — для любого пути прибытия. Для лю­бого x(t), которое могло бы возникнуть для любой мыслимой воображаемой траектории, нужно подсчитать амплитуду. Затем их все нужно сложить. Что же мы примем за амплитуду ве­роятности некоторого пути? Наш интеграл действия говорит нам, какой обязана быть амплитуда отдельного пути. Ампли­туда пропорциональна eiS/h, где S — действие на этом пути. Это значит, что если мы представим фазу амплитуды в виде комплексного числа, то фазовый угол будет равен S/h,. Действие S имеет размерность энергии на время, и у постоянной Планка размерность такая же. Это постоянная, которая определяет, когда нужна квантовая механика.