Выбрать главу

И вот как все это срабатывает. Пусть для всех путей дейст­вие S будет весьма большим по сравнению с числом h. Пусть какой-то путь привел к некоторой величине амплитуды. Фаза рядом проложенного пути окажется совершенно другой, потому что при огромном S даже незначительные изменения S резко меняют фазу (ведь hчрезвычайно мало). Значит, рядом лежащие пути при сложении обычно гасят свои вклады. И толь­ко в одной области это не так — в той, где и путь и его сосед— оба в первом приближении обладают одной и той же фазой (или, точнее, почти одним и тем же действием, меняющимся в пределах h). Только такие пути и принимаются в расчет. А в предельном случае, когда постоянная Планка hстремится к нулю, правильные квантовомеханические законы можно подытожить, сказав: «Забудьте обо всех этих амплитудах ве­роятностей. Частица и впрямь движется по особому пути — именно по тому, по которому S в первом приближении не ме­няется». Такова связь между принципом наименьшего действия и квантовой механикой. То обстоятельство, что таким способом можно сформулировать квантовую механику, было открыто в 1942 г. учеником того же самого учителя, мистера Бадера, о котором я вам рассказывал. [Первоначально квантовая меха­ника была сформулирована при помощи дифференциального уравнения для амплитуды (Шредингер), а также при помощи некоторой матричной математики (Гейзенберг).]

Теперь я хочу потолковать о других принципах минимума в физике. Есть очень много интересных принципов такого рода. Я не буду их все перечислять, а назову еще только один. Позже, когда мы доберемся до одного физического явления, для ко­торого существует превосходный принцип минимума, я рас­скажу вам о нем. А сейчас я хочу показать, что необязательно описывать электростатику при помощи дифференциального уравнения для поля; можно вместо этого потребовать, чтобы некоторый интеграл обладал максимумом или минимумом. Для начала возьмем случай, когда плотность зарядов известна повсюду, а нужно найти потенциал j в любой точке простран­ства. Вы уже знаете, что ответ должен быть такой:

Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*

это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать

Единственный член первого порядка, который будет ме­няться, таков:

Во втором члене U* подынтегральное выражение примет вид

изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл

Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно

Это нужно проинтегрировать по x, у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по х по частям. Это приведет к добавочному дифференци­рованию j по х. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством

Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*

это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать

Единственный член первого порядка, который будет ме­няться, таков:

Во втором члене U* подынтегральное выражение примет вид

изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл

Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно

Это нужно проинтегрировать по x, у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по xпо частям. Это приведет к добавочному дифференци­рованию j по x. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством

Проинтегрированный член равен нулю, так как мы считаем f равным нулю на бесконечности. (Это отвечает обращению h в нуль при t1и t2. Так что наш принцип более точно формули­руется следующим образом: U* для правильного j меньше, чем для любого другого

j(х, у, z), обладающего теми же зна­чениями на бесконечности.) Затем мы проделаем то же с у и с z. Наш интеграл DU* обратится в