Механическая энергия в обоих случаях одна и та же — она определяется только силой, действующей между двумя контурами.
Сложение двух уравнений дает
Полная энергия всей системы равна, конечно, сумме двух электрических энергий и взятой один раз механической энергии. В итоге выходит
Полная энергия всей системы — это на самом деле Uмех со знаком минус. Если нам нужна, скажем, полная энергия магнитного диполя, то следует писать
И только тогда, когда мы потребуем, чтобы все токи оставались постоянными, можно использовать лишь одну из частей энергии Uмех (всегда равную истинной анергии со знаком минус) для вычисления механических сил. В более общих задачах надо соблюдать осторожность, чтобы не забыть ни одной из энергий. Сходное положение наблюдалось и в электростатике. Мы показали там, что энергия конденсатора равна Q2/2C. Когда мы применяем принцип виртуальной работы, чтобы найти силу, действующую между обкладками конденсатора, то изменение энергии равно Q2/2, умноженному на изменение в 1/С, т. е.
(15.14)
А теперь предположим, что нам надо было бы подсчитать работу, затрачиваемую на сближение двух проводников, но при другом условии — что напряжение между ними остается постоянным. Тогда правильную величину силы мы могли бы получить из принципа виртуальной работы, если бы поступили немного искусственным образом. Раз Q = CV, то полная энергия равна 1/2 CV2. Но если бы мы ввели условную энергию, равную —1/2CV2, то принцип виртуальной работы можно было бы применить для получения сил, полагая изменение этой условной энергии равным механической работе (это при условии, что напряжение V
считается постоянным). Тогда
(15.15)
а это то же самое, что написано в уравнении (15.14). Мы получаем правильный ответ, хотя пренебрегаем работой, которую электрическая система тратит на постоянное поддержание напряжения. И здесь опять электрическая энергия ровно вдвое больше механической и имеет обратный знак.
Итак, если мы ведем расчет искусственно, пренебрегая тем фактом, что источник потенциала должен тратить работу на то, чтобы напряжение оставалось неизменным, то все равно мы приходим к правильному результату. Это в точности соответствует положению дел в магнитостатике.
§ 3. Энергия постоянных токов
Зная, что Uполн = -Uмех, используем этот факт, чтобы найти истинную энергию постоянных токов в магнитных полях. Начать можно с истинной энергии небольшой токовой петельки. Обозначая Uполнпросто через U, напишем
U = m·В.(15.16)
Хотя эту энергию мы подсчитали только для плоской прямоугольной петли, все это верно и для плоской петельки произвольной формы.
Энергию контура произвольной формы можно найти, представив себе, что он состоит из небольших токовых петель. Скажем, имеется провод в форме петли Г (фиг. 15.4). Натянем на эту петлю поверхность S, а на ней наметим множество петелек, каждую из которых можно считать плоской. Если заставить ток I циркулировать по каждой петельке, то в итоге выйдет то же самое, как если бы ток шел только по петле Г, ибо токи на всех внутренних линиях взаимно уничтожатся. Система небольших токов физически не будет отличима от исходного контура, и энергия должна быть той же, т. е. должна быть равна сумме энергий всех петелек.
Если площадь каждой петельки Dа, то ее энергия равна IDаBn, где Bn — компонента В, нормальная к Dа. Полная энергия равна U = SIBnDа.
Фиг. 15.4. Энергию большой петли в магнитном поле можно считать суммой энергий маленьких петелек.
В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и
(15.17)
где n — единичная нормаль к da,
Если мы положим В = СXA, то поверхностный интеграл можно будет связать с контурным (по теореме Стокса):
(15.18)
где ds — линейный элемент вдоль Г. Итак, мы получили энергию контура произвольной формы:
(15.19)
В этом выражении А обозначает, конечно, векторный потенциал, возникающий из-за токов (отличных от тока / в проводе), которые создают поле В близ провода.
Далее, любое распределение постоянных токов можно считать состоящим из нитей, идущих вдоль тех линий, по которым течет ток. Для любой пары таких контуров энергия дается выражением (15.19), где интеграл взят вокруг одного из контуров, а векторный потенциал А создан другим контуром. Полная энергия получается сложением всех таких пар. Если вместо того, чтобы следить за парами, мы полностью просуммируем по всем нитям, то каждую энергию мы засчитаем дважды (такой же эффект мы наблюдали в электростатике), и полную энергию можно будет представить в виде
(15.20)
Это соответствует полученному для электростатической энергии выражению
(15.21)
Значит, мы можем считать А, если угодно, своего рода потенциальной энергией токов в магнитостатике. К сожалению, это представление не очень полезно, потому что оно годится только для статических полей. В действительности, если поля со временем меняются, ни выражение (15.20), ни выражение (15.21) не дают правильной величины энергии.
§ 4. B или А?
В этом параграфе нам хотелось бы обсудить такой вопрос: что такое векторный потенциал — просто полезное для расчетов приспособление (так в электродинамике полезен скалярный потенциал) или же он как поле вполне «реален»? Или же «реально» лишь магнитное поле, так как только оно ответственно за силу, действующую на движущуюся частицу?
Для начала нужно сказать, что выражение «реальное поле» реального смысла не имеет. Во-первых, вы вряд ли вообще полагаете, что магнитное поле хоть в какой-то степени «реально», потому что и сама идея поля — вещь довольно отвлеченная. Вы не можете протянуть руку и пощупать это магнитное поле. Кроме того, величина магнитного поля тоже не очень определенна; выбором подходящей подвижной системы координат можно, к примеру, добиться, чтобы магнитное поле в данной точке вообще пропало.
Под «реальным» полем мы понимаем здесь вот что: реальное поле — это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,— это говорить, что прочие заряды создают какие-то «условия» (какие — не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и магнитное поля), то можем полностью определить поведение частицы, нимало не заботясь после о том, что именно создало эти условия.
Иными словами, если бы эти прочие заряды каким-то образом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть совокупность чисел, заданных так, что то, что происходит в некоторой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потенциал «реальным» полем.