Любой большой электромагнит обладает большой самоиндукцией. Пусть, например, к катушке большого электромагнита присоединена батарея (фиг. 16.6) и пусть установилось большое магнитное поле. (Ток достигает постоянной величины, определяемой напряжением батареи и сопротивлением провода катушки.)
Фиг. 16.6. Включение электромагнита в цепь.
Лампочка открывает проход току в момент отключения, препятствуя возникновению слишком большой э.д.с. на контактом выключателя.
Но теперь предположим, что мы пытаемся отсоединить батарею, разомкнув выключатель. Если бы мы на самом деле разорвали цепь, ток быстро уменьшился бы до нуля и в процессе уменьшения создал бы огромную э. д. с. В большинстве случаев такой э. д. с. оказывается вполне достаточно, чтобы образовалась вольтова дуга между разомкнутыми контактами выключателя. Возникающее большое напряжение могло бы нанести вред катушке, да и вам, если бы именно вы размыкали выключатель! По этим причинам электромагниты обычно включают в цепь примерно так, как показано на фиг. 16.6. Когда переключатель разомкнут, ток не меняется быстро, а продолжает течь через лампу, оставаясь постоянным за счет э. д. с. от самоиндукции катушки.
§ 3. Силы, действующие на индуцируемые токи
Вы, вероятно, наблюдали великолепную демонстрацию правила Ленца с помощью приспособления, изображенного на фиг. 16.7. Это электромагнит точно такой же, как катушка а на фиг. 16.5. На одном конце электромагнита помещается алюминиевое кольцо. Если с помощью переключателя подсоединить катушку к генератору переменного тока, то кольцо взлетает в воздух. Силу, конечно, порождают токи, индуцируемые в кольце. Тот факт, что кольцо отлетает прочь, показывает, что токи в нем препятствуют изменению поля, проходящего через кольцо. Когда у магнита северный полюс находится сверху, индуцированный ток в кольце создает внизу северный полюс. Кольцо и катушка отталкиваются точно так же, как два магнита, приложенные одинаковыми полюсами. Если в кольце сделать тонкий разрез по радиусу, сила исчезает — убедительное доказательство того, что она действительно обусловлена токами в кольце.
Фиг. 16.7. Проводящее кольцо сильно отталкивается электромагнитом, когда в нем меняется ток.
Фиг. 16.8. Электромагнит вблизи идеально проводящей плоскости.
Если вместо кольца у края электромагнита поместить алюминиевый или медный диск, то и он отталкивается; индуцированные токи циркулируют в материале диска и снова вызывают отталкивание.
Интересный эффект, в основе похожий на предыдущий, возникает с листом идеального проводника. В «идеальном проводнике» ток совсем не встречает сопротивления. Поэтому возникшие в нем токи могут течь не переставая. Фактически малейшая э. д. с. создала бы сколь угодно большой ток, а это на самом деле означает, что в нем вообще не может быть э. д. с. Любая попытка создать магнитный поток, проходящий сквозь такой лист, вызовет токи, образующие противоположно направленные поля В — все со сколь угодно малыми э. д. с., так что никакого потока не будет.
Если к листу идеального проводника мы поднесем электромагнит, то при включении тока в магните в листе возникают токи (называемые вихревыми токами), и никакой магнитный поток не пройдет. Линии поля будут иметь вид, показанный на фиг. 16.8. То же самое произойдет, если к идеальному проводнику поднести постоянный магнит. Поскольку вихревые токи создают противоположные поля, магниты от проводника отталкиваются. Поэтому оказывается возможным подвесить постоянный магнит в воздухе над листом идеального проводника, изготовленного в форме тарелки (фиг. 16.9). Магнит будет поддерживаться в воздухе за счет отталкивания индуцированных вихревых токов в идеальном проводнике. При обычных температурах идеальных проводников не существует, но некоторые материалы при достаточно низких температурах становятся идеальными проводниками.
Фиг. 16.9. Магнитная палочка отталкивается вихревыми токами и повисает над чашей из сверхпроводника.
Так, при температуре ниже 3,8° К олово становится идеальным проводником; тогда оно называется сверхпроводником.
Если проводник, показанный на фиг. 16.8, не вполне идеальный, то возникнет некоторое сопротивление течению вихревых токов. Токи будут постепенно замирать, и магнит медленно опустится. В неидеальном проводнике, чтобы течь дальше, вихревым токам необходима некоторая э. д. с., а для возникновения э. д. с. поток должен непрерывно меняться. Поток магнитного поля постепенно проникает в проводник.