Вы, возможно, думаете, что конструирование электрических генераторов уже не представляет интереса, что это уже мертвая наука, ведь все они давно созданы. Почти совершенные генераторы или моторы можно взять просто с полки. Но даже если бы это было и так, нужно восхищаться чудесной законченностью решения проблемы. Однако осталось немало и нерешенных задач. И даже генераторы и моторы становятся снова проблемой. Возможно, что скоро для решения проблемы распределения электрической энергии понадобится использовать всю область низких температур и сверхпроводников. Будут созданы новые оптимальные установки с учетом радикально новых факторов. Возможно, энергетические сети будущего будут мало похожи на сегодняшние.
Итак, вы видите, что при изучении законов индукции можно заняться бесчисленным множеством приложений и проблем. Конструирование электрических машин само по себе может стать задачей всей жизни. Мы не будем слишком углубляться в этот вопрос, но мы должны осознать то, что открытие закона индукции неожиданно связало теорию с огромным числом практических применений. Область эта принадлежит инженерам и тем ученым прикладной науки, которые занимаются детальной разработкой различных приложений. Физика дает им лишь основу — основные законы, не зависящие от того, к чему они применяются. (Создание этой основы еще далеко не закончено, потому что предстоит еще подробно рассмотреть свойства железа и меди. Немного позже мы увидим, что физика может кое-что сказать и о них.)
Современная электротехника берет свое начало с открытий Фарадея. Бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить.
Глава 17
ЗАКОНЫ ИНДУКЦИИ
§ 1. Физика индукции
§ 2. Исключения из «правила потока»
§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон
§ 4. Парадокс
§ 5. Генератор переменного тока
§ 6. Взаимная индукция
§ 7. Самоиндукция
§ 8. Индуктивность и магнитная энергия
§ 1. Физика индукции
В предыдущей главе мы описали множество явлений, которые показали, что эффекты индукции весьма сложны и интересны. Сейчас мы хотим обсудить основные законы, управляющие этими эффектами. Мы уже определяли э. д. с. в проводящей цепи как полную силу, действующую на заряды, просуммированную по всей длине цепи. Более точно, это тангенциальная компонента силы на единичный заряд, проинтегрированная по всему проводу вдоль цепи. Следовательно, эта величина равна полной работе, совершаемой над единичным зарядом, когда он обходит один раз вокруг цепи.
Мы дали также «правило потока», которое утверждает, что э. д. с. равна скорости изменения магнитного потока сквозь такую цепь проводников. Давайте посмотрим, можем ли мы понять, почему это так. Прежде всего рассмотрим случай, когда поток меняется из-за того, что цепь движется в постоянном поле.
На фиг. 17.1 показана простая проволочная петля, размеры которой могут меняться. Петля состоит из двух частей — неподвижной U-образной части (а) и подвижной перемычки (b), которая может скользить вдоль двух плеч U. Цепь всегда замкнута, но площадь ее может меняться. Предположим, что мы помещаем эту петлю в однородное магнитное поле так, что плоскость U оказывается перпендикулярной полю. Согласно правилу, при движении перемычки в петле должна возникать э. д. с., пропорциональная скорости изменения потока сквозь петлю. Эта э. д. с. будет порождать в петле ток. Мы предположим, что сопротивление проволоки достаточно велико, так что токи малы.
Фиг. 17.1. В рамке наводится э.д.с., если поток меняется за счет изменения площади рамки при перемещении перемычки b.
Тогда магнитным полем от этого тока можно пренебречь.
Поток через петлю равен wLB, поэтому «правило потока» дало бы для э. д. с. (ее обозначим через о)
где v — скорость смещения перемычки.
Нам следовало бы понимать этот результат и с другой точки зрения, отправляясь от магнитной силы vXB, действующей на заряды в движущейся перекладине. Эти заряды будут чувствовать силу, касательную к проволоке и равную vB для единичного заряда. Она постоянна вдоль длины w перемычки и равна нулю в остальных местах, поэтому интеграл равен