Выбрать главу

Вы, возможно, думаете, что конструирование электрических генераторов уже не представляет интереса, что это уже мертвая наука, ведь все они давно созданы. Почти совершенные гене­раторы или моторы можно взять просто с полки. Но даже если бы это было и так, нужно восхищаться чудесной законченностью решения проблемы. Однако осталось немало и нерешенных задач. И даже генераторы и моторы становятся снова проблемой. Возможно, что скоро для решения проблемы распределения электрической энергии понадобится использовать всю область низких температур и сверхпроводников. Будут созданы новые оптимальные установки с учетом радикально новых факторов. Возможно, энергетические сети будущего будут мало похожи на сегодняшние.

Итак, вы видите, что при изучении законов индукции можно заняться бесчисленным множеством приложений и проблем. Конструирование электрических машин само по себе может стать задачей всей жизни. Мы не будем слишком углубляться в этот вопрос, но мы должны осознать то, что открытие закона индукции неожиданно связало теорию с огромным числом прак­тических применений. Область эта принадлежит инженерам и тем ученым прикладной науки, которые занимаются деталь­ной разработкой различных приложений. Физика дает им лишь основу — основные законы, не зависящие от того, к чему они применяются. (Создание этой основы еще далеко не закончено, потому что предстоит еще подробно рассмотреть свойства железа и меди. Немного позже мы увидим, что физика может кое-что сказать и о них.)

Современная электротехника берет свое начало с открытий Фарадея. Бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить.

Глава 17

ЗАКОНЫ ИНДУКЦИИ

§ 1. Физика индукции

§ 2. Исключения из «правила потока»

§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон

§ 4. Парадокс

§ 5. Генератор переменного тока

§ 6. Взаимная индукция

§ 7. Самоиндукция

§ 8. Индуктивность и магнитная энергия

§ 1. Физика индукции

В предыдущей главе мы описали множество явлений, которые показали, что эффекты индукции весьма сложны и интересны. Сейчас мы хотим обсудить основные законы, управ­ляющие этими эффектами. Мы уже определяли э. д. с. в проводящей цепи как полную силу, действующую на заряды, просуммированную по всей длине цепи. Более точно, это танген­циальная компонента силы на единичный заряд, проинтегрированная по всему проводу вдоль цепи. Следовательно, эта величина равна пол­ной работе, совершаемой над единичным заря­дом, когда он обходит один раз вокруг цепи.

Мы дали также «правило потока», которое утверждает, что э. д. с. равна скорости изме­нения магнитного потока сквозь такую цепь проводников. Давайте посмотрим, можем ли мы понять, почему это так. Прежде всего рассмотрим случай, когда поток меняется из-за того, что цепь движется в постоянном поле.

На фиг. 17.1 показана простая проволочная петля, размеры которой могут меняться. Петля состоит из двух частей — неподвижной U-образной части (а) и подвижной перемычки (b), которая может скользить вдоль двух плеч U. Цепь всегда замкнута, но площадь ее может меняться. Предположим, что мы помещаем эту петлю в однородное магнитное поле так, что плоскость U оказывается перпендикуляр­ной полю. Согласно правилу, при движении перемычки в петле должна возникать э. д. с., пропорциональная скорости изменения потока сквозь петлю. Эта э. д. с. будет порождать в петле ток. Мы предположим, что сопротивле­ние проволоки достаточно велико, так что токи малы.

Фиг. 17.1. В рамке наводится э.д.с., если поток меняется за счет изменения площади рамки при перемещении перемычки b.

Тогда магнитным полем от этого тока можно пре­небречь.

Поток через петлю равен wLB, поэтому «правило потока» дало бы для э. д. с. (ее обозначим через о)

где v скорость смещения перемычки.

Нам следовало бы понимать этот результат и с другой точки зрения, отправляясь от магнитной силы vXB, действующей на заряды в движущейся перекладине. Эти заряды будут чув­ствовать силу, касательную к проволоке и равную vB для единичного заряда. Она постоянна вдоль длины w перемычки и равна нулю в остальных местах, поэтому интеграл равен