Выбрать главу

Второе говорит, что к запаздывающему кулонову полю надо сделать «поправку», равную быстроте изменения запаздываю­щего кулонова поля, умноженной на r'/с, т. е. на само запазды­вание. Этот множитель как бы стремится скомпенсировать за­паздывание в первом. Два первых слагаемых соответствуют вы­числению «запаздывающего кулонова поля» и затем экстрапо­ляции его в будущее, на время r'/с, т. е. как раз к моменту t! Экстраполяция линейна, как если бы мы предположили, что «запаздывающее кулоново поле» будет по-прежнему изменяться со скоростью, рассчитанной для заряда в точке (2'). Если поле меняется медленно, эффект запаздывания почти полностью сводится на нет поправочным слагаемым, и оба слагаемых вмес­те приводят к величине электрического поля, очень близкой к «мгновенному кулонову полю» заряда, находящегося в точ­ке (2).

Наконец, в формуле (21.1) имеется еще третье слагаемое — вторая производная единичного вектора еr'. Изучая явление света, мы по существу использовали тот факт, что вдали от за­ряда два первых слагаемых убывают как обратный квадрат расстояния и на больших расстояниях оказываются слишком слабыми по сравнению с третьим, которое убывает как 1/r. Поэтому мы сосредоточили наше внимание на последнем сла­гаемом и показали, что оно (опять-таки на больших расстоя­ниях) пропорционально компоненте ускорения заряда, попе­речной к линии зрения. (Кроме того, почти всюду ранее мы рас­сматривали только случай, когда заряды двигались нереляти­вистски. Релятивистские эффекты рассматривались только в гл. 34, вып. 3.)

Теперь нужно попробовать связать эти две вещи. У нас есть уравнения Максвелла и есть формула (21.1) для поля точечного заряда. Естественно спросить, эквивалентны ли они? Если мы сможем вывести (21.1) из уравнений Максвелла, то действи­тельно поймем связь света с электромагнетизмом. Вывод ее и есть главная цель этой главы.

Выясняется, что полного вывода мы сделать не можем — чересчур сложные математические детали не позволят нам выйти с поля боя без потерь. Но все же мы подойдем к цели до­статочно близко, так что вы легко поймете, как может быть установлена интересующая нас связь. Мы опустим лишь неко­торые математические детали. Математика этой главы может показаться некоторым из вас довольно сложной, и, возможно, вам даже станет скучно следить внимательно за выводом. Но мы все же считаем, что очень важно связать то, что вы учили раньше, с тем, что вы изучаете сейчас, или по крайней мере продемонстрировать, как эта связь может быть установлена. Если вы не забыли прежние главы, то обратите внимание на то, что всякий раз, как мы принимали некоторое высказывание за исходную точку обсуждения, мы заботливо объясняли, является ли это высказывание новым «допущением», т. е. отражает ли оно основной закон природы или же его можно в конечном счете вывести из каких-то других законов. Дух этих лекций обя­зывает нас обсудить связь менаду светом и уравнениями Мак­свелла. Может быть, вам будет кое-где и трудно — с этим уж ничего не поделаешь: другого пути не существует.

§ 2. Сферические волны от точечного источника

В гл. 18 мы установили, что уравнения Максвелла можно решать подстановкой

(21.2)

и

(21.3)

где j и А обязаны удовлетворять уравнениям

(21.4)

и

(21.5)

и, кроме того, условию

(21.6)

Найдем теперь решение уравнений (21.4) и (21.5). Для этого надо уметь решать уравнение

(21.7)

где величина s (которая называется источником) известна. Ясно, что для уравнения (21.4) s соответствует r/e0, a ш—это j, а для уравнения (21.5) s соответствует jx/e0с2, если ш — это Ах, и т. д. Но нас интересует чисто математическая задача решения (21.7) безотносительно к тому, каков физический смысл ш и s. Там, где r и j равны нулю (это место называется «пустотой»), там потенциалы j и А и поля Е и В удовлетворяют трехмерному волновому уравнению без источников; математическая форма этого уравнения такова:

(21.8)

В гл. 20 мы видели, что решения этого уравнения могут пред­ставлять волны разных сортов: плоские волны, бегущие в x-направлении я|;=f(t-x/с); плоские волны, бегущие вдоль у или вдоль z или в любом другом направлении; сферические