Выбрать главу

Раньше мы сказали, что цепь, составленная из одних только мнимых импедансов, таких, как индуктивности и емкости, будет иметь чисто мнимый импеданс. Но как же тогда выходит, что в той цепи, которую мы сейчас рассматриваем (а в ней есть толь­ко одни L и С), импеданс при частотах ниже Ц4/LC представля­ет собой чистое сопротивление?

Фиг. 22.20. Лестница LC, изображенная двумя экви­валентными способами.

Для высоких частот импеданс чисто мнимый, в полном согласии с нашим прежним утвержде­нием. Для низких же частот импеданс — чистое сопротивление и поэтому поглощает энергию. Но как может цепь, подобно со­противлению, непрерывно поглощать энергию, если она состав­лена только из индуктивностей и емкостей? Ответ состоит в том, что этих емкостей и самоиндукций бесконечное множество, и получается, что, когда источник соединен с цепью, он обязан сперва снабдить энергией первую индуктивность и емкость, за­тем вторую, третью и т. д. В цепях подобного рода энергия непрерывно и с постоянной скоростью отсасывается из генера­тора и безостановочно течет в цепь. Энергия запасается в индуктивностях и емкостях вдоль цепи.

Эта идея подсказывает интересную мысль 0 том, что факти­чески происходит внутри цепи. Следует ожидать, что если к переднему концу цепи подключить источник, то действие этого источника начнет распространяться вдоль по цепи к бесконечно­му концу. Распространение волн вдоль линии очень похоже на излучение от антенны, которая отбирает энергию от питающего ее источника; точнее, можно ожидать, что такое распростране­ние происходит, когда импеданс действителен, т. е. когда co меньше Ц4/LC. Но когда импеданс чисто мнимый, т. е. при co, больших Ц4/LC, то такого распространения ожидать не следует.

§ 7. Фильтры

В предыдущем параграфе мы видели, что бесконечная лест­ничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения Ц4/LC, называемого граничной часто­той w0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при w >w0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.

Пусть передний конец лестницы соединен с каким-то гене­ратором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что слу­чается, когда мы переходим от n-го звена к (n+1)-му. Токи In и напряжения Vn мы определим так, как показано на фиг. 22.21,а.

Фиг. 22.21. Нахождение фактора распространения лестницы.

Напряжение Vn+1 можно получить из Vn, если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z0; и тогда достаточно проана­лизировать только схему фиг. 22.21, б. Мы прежде всего заме­чаем, что каждое Vn, поскольку это напряжение на зажимах сопротивлеиия z0, должно быть равно Inz0. Кроме того, разность между Vn и Vn+l равна просто Inz1:

Получается отношение

которое можно назвать фактором распространения для одного звена лестницы; обозначим его a. Для всех звеньев

(22.29)

и напряжение за nзвеном равно

Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению e на 754-ю степень a.

Как выглядит a для лестницы LС на фиг. 22.20, а? Взяв z0 из уравнения (22.27) и г1 =iwL, получим

Если частота на входе ниже граничной частоты w0=Ц4/LС, то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение a по модулю равно единице; можно написать