Раньше мы сказали, что цепь, составленная из одних только мнимых импедансов, таких, как индуктивности и емкости, будет иметь чисто мнимый импеданс. Но как же тогда выходит, что в той цепи, которую мы сейчас рассматриваем (а в ней есть только одни L и С), импеданс при частотах ниже Ц4/LC представляет собой чистое сопротивление?
Фиг. 22.20. Лестница L—C, изображенная двумя эквивалентными способами.
Для высоких частот импеданс чисто мнимый, в полном согласии с нашим прежним утверждением. Для низких же частот импеданс — чистое сопротивление и поэтому поглощает энергию. Но как может цепь, подобно сопротивлению, непрерывно поглощать энергию, если она составлена только из индуктивностей и емкостей? Ответ состоит в том, что этих емкостей и самоиндукций бесконечное множество, и получается, что, когда источник соединен с цепью, он обязан сперва снабдить энергией первую индуктивность и емкость, затем вторую, третью и т. д. В цепях подобного рода энергия непрерывно и с постоянной скоростью отсасывается из генератора и безостановочно течет в цепь. Энергия запасается в индуктивностях и емкостях вдоль цепи.
Эта идея подсказывает интересную мысль 0 том, что фактически происходит внутри цепи. Следует ожидать, что если к переднему концу цепи подключить источник, то действие этого источника начнет распространяться вдоль по цепи к бесконечному концу. Распространение волн вдоль линии очень похоже на излучение от антенны, которая отбирает энергию от питающего ее источника; точнее, можно ожидать, что такое распространение происходит, когда импеданс действителен, т. е. когда co меньше Ц4/LC. Но когда импеданс чисто мнимый, т. е. при co, больших Ц4/LC, то такого распространения ожидать не следует.
§ 7. Фильтры
В предыдущем параграфе мы видели, что бесконечная лестничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения Ц4/LC, называемого граничной частотой w0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при w >w0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.
Пусть передний конец лестницы соединен с каким-то генератором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что случается, когда мы переходим от n-го звена к (n+1)-му. Токи In и напряжения Vn мы определим так, как показано на фиг. 22.21,а.
Фиг. 22.21. Нахождение фактора распространения лестницы.
Напряжение Vn+1 можно получить из Vn, если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z0; и тогда достаточно проанализировать только схему фиг. 22.21, б. Мы прежде всего замечаем, что каждое Vn, поскольку это напряжение на зажимах сопротивлеиия z0, должно быть равно Inz0. Кроме того, разность между Vn и Vn+l равна просто Inz1:
Получается отношение
которое можно назвать фактором распространения для одного звена лестницы; обозначим его a. Для всех звеньев
(22.29)
и напряжение за n-м звеном равно
Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению e на 754-ю степень a.
Как выглядит a для лестницы L—С на фиг. 22.20, а? Взяв z0 из уравнения (22.27) и г1 =iwL, получим
Если частота на входе ниже граничной частоты w0=Ц4/LС, то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение a по модулю равно единице; можно написать