Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iwL. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фактически эквивалентна индуктивности, последовательно соединенной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.
Фиг. 23.2. Эквивалентная схема реальной индуктивности на малых частотах.
Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.
Может быть, надо пользоваться контуром, смахивающим скорее на фиг. 23.2,6, где последовательно расставлено несколько маленьких R и L? Однако общий
импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.
Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто между витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких частотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для более высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной модели.
Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как wL, значит, он на низких частотах обращается в нуль — «замыкается накоротко», и мы замечаем только сопротивление провода. Если частота начинает расти, то wL вскоре становится больше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/wС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктивность. Оттого-то ток в катушке прыгает с одного витка на другой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хотелось бы, чтобы ток шел по виткам катушки, но сам-то он выбирает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродинамике, скажем, если вы захотите заставить что-то двигаться быстрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непроходимый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.
§ 2. Конденсатор на больших частотах
А теперь обсудим подробнее поведение конденсатора — геометрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, потому что геометрия пары обкладок много проще геометрии катушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним генератором парой проводов. Если зарядить конденсатор постоянным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.