Фиг. 23.4. Электрическое и магнитное поля между обкладками конденсатора.
Представим теперь, что вместо постоянного тока к обкладкам приложено переменное напряжение низкой частоты. (После мы увидим, какая частота «низкая», а какая «высокая».) Конденсатор, скажем, соединен с низкочастотным генератором. Когда напряжение меняется, то с верхней обкладки положительный заряд убирается и прикладывается отрицательный. В момент, когда это происходит, электрическое поле исчезает, а потом восстанавливается, но уже в обратную сторону. Заряд медленно плещется туда-сюда, и поле поспевает за ним. В каждый момент электрическое поле однородно (фиг. 23.4, б); есть, правда, небольшие краевые эффекты, но мы намерены ими пренебречь. Величину электрического поля можно записать в виде
(23.2)
где Е0— постоянно. Но останется ли это справедливым, когда частота возрастет? Нет, потому что при движении электрического поля вверх и вниз через произвольную петлю Г1 проходит поток электрического поля (фиг. 23.4, а). А, как вам известно, изменяющееся электрическое поле создает магнитное. Согласно одному из уравнений Максвелла, при наличии изменяющегося электрического поля (как в нашем случае) обязан существовать и криволинейный интеграл от магнитного поля. Интеграл от магнитного поля по замкнутому кругу, умноженный на с2, равен скорости изменения во времени электрического потока через поверхность внутри круга (если нет никаких токов):
(23.3)
Итак, сколько же здесь этого магнитного поля? Это узнать нетрудно. Возьмем в качестве петли Г1 круг радиуса r. Из симметрии ясно, что магнитное поле идет так, как показано на рисунке. Тогда интеграл от В равен 2prВ. А поскольку электрическое поле однородно, то поток его равен просто Е, умноженному на pr2, на площадь круга:
(23.4)
Производная Е по времени в нашем переменном поле равна iwE0eiwt, Значит, в нашем конденсаторе магнитное поле равно
(23.5)
Иными словами, магнитное поле тоже колеблется, а его величина пропорциональна w и r.
К какому эффекту это приведет? Когда существует магнитное поле, которое меняется, то возникнут наведенные электрические поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усиливается: оно пропорционально скорости изменения Е, т. е. w. Импеданс конденсатора больше не будет просто равен 1/iwС.
Будем увеличивать частоту и посмотрим повнимательнее, что происходит. У нас есть магнитное поле, которое плещется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеется изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бывает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с r, чтобы криволинейный интеграл от него мог быть равен изменяющемуся потоку магнитного поля.
Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах,— к однородному полю. Обозначим поле при низких частотах через Е1, и пусть оно по-прежнему равно Е0еiwt, а правильное поле запишем в виде
где E2— поправка из-за изменения магнитного поля. При любых w мы будем задавать поле в центре конденсатора в виде E0eiwt (тем самым определяя Е0), так что в центре поправки не будет: E2=0 при r=0.