Выбрать главу

(23.11)

Но мы еще не кончили! Раз магнитное поле В вовсе не такое, как мы сперва думали, то мы, значит, неверно подсчитывали Е2. Надо найти еще поправку к Е, вызываемую добавочным магнит­ным полем В2. Эту добавочную поправку к электрическому по­лю назовем Е3. Она связана с магнитным полем В2 так же, как E2 была связана с В1. Можно опять прибегнуть к тому же самому соотношению (23.6), изменив в нем только индексы:

(23.12)

Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:

(23.13)

Если теперь наше дважды исправленное поле записать в виде Е=Е1+Е2+Е3 , то мы получим

(23.14)

Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значе­ние поля лежит чуть выше кривой (E1+E2).

Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново под­правленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В3 можно использовать (23.10), изменив индексы при В и Е с 2 до 3.

Очередная поправка к электрическому полю равна

С этой степенью точности все электрическое поле дается, стало быть, формулой

где численные коэффициенты написаны в таком виде, что стано­вится ясно, как продолжить ряд.

Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E0eiwt на бесконечный ряд, который содержит только перемен­ную wr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J0(x), как бесконечный ряд в скоб­ках формулы (23.15):

Тогда искомое решение есть произведение E0eiwt на эту функцию при x=wr/c:

(23.17)

Мы обозначили нашу специальную функцию через J0 по­тому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J0. Она всегда возникает, когда вы решаете задачу о волнах, обладающих цилиндрической сим­метрией. Функция J0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.

Другие функции Бесселя — J1? J2 и т. д.— относятся к цилиндрическим волнам, сила которых меняется при обходе вокруг оси цилиндра.

Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше — настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы уви­дите, однако, что может понадобиться и весь ряд, чтобы получи­лось аккуратное описание поля на больших радиусах или на больших частотах.

§ 3. Резонансная полость

Посмотрим теперь, что даст наше решение для электрическо­го поля между обкладками конденсатора, если продолжать увеличивать частоту все выше и выше. При больших w параметр х=wr/с тоже становится большим, и первые несколько слагае­мых ряда для J0 от х быстро возрастают. Это означает, что па­рабола, которую мы начертили на фиг. 23.5, на больших часто­тах изгибается книзу круче.

В самом деле, она выглядит так, как будто поле на высокой частоте все время старается обратиться в нуль где-то при с/w, примерно равном половине а. Давайте посмотрим, действитель­но ли функция J0 проходит через нуль и становится отрицатель­ной. Сперва испытаем х=2: