Резонансное поведение легко наблюдать, если в банке проделать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вторую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженности полей в полости. Представьте теперь, что входная петля нашей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9). Сигнал-генератор состоит из источника переменного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной петли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-генератора, то получится кривая, похожая на изображенную на фиг. 23.10. Ток на выходе невелик на всех частотах, кроме тех, которые близки к w0— резонансной частоте полости. Резонансная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно получается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.
§ 4. Собственные колебания полости
Предположим, что мы пытаемся проверить свою теорию и делаем измерения с настоящей банкой. Мы берем банку в форме цилиндра диаметром 7,5 см и высотой около 6,3 см. К ней приделываются входная и выходная петли (см. фиг. 23.8). Если рассчитать ожидаемую для этой банки резонансную частоту по формуле (23.18), то получится f0=w0/2p=3010 Мгц. Мы берем сигнал-генератор с частотой около 3000 Мгц и начинаем слегка ее варьировать, пока не появляется резонанс; мы замечаем, что наибольший ток на выходе возникает, скажем, при частоте 3050 Мгц. Это очень близко к предсказанной резонансной частоте, но до конца не совпадает. Можно привести несколько мыслимых причин расхождения. Может быть, резонансная частота немного изменилась, потому что мы прорезали несколько дырок, чтобы вставить соединительные петли. Но это вряд ли: дырки должны были бы слегка понизить резонансную частоту, так что причина не в этом. Тогда, может быть, в калибровке частоты сигнал-генератора допущена небольшая ошибка или измерения диаметра полости недостаточно точны. Во всяком случае, согласие довольно хорошее.
Но гораздо важнее то, что произойдет, когда частота нашего сигнал-генератора уже значительно удалится от 3000 Мгц. Тогда мы получим такой результат, как на фиг. 23.11. Если начать сильнее менять частоту, то получится, что, кроме ожидавшегося резонанса близ 3000 Мгц, имеется еще другой резонанс возле 3300 Мгц и третий возле 3820 Мгц. Что означают эти добавочные резонансы? Разгадку дает фиг. 23.6. Там мы предположили, что на край банки приходится первый нуль функции Бесселя. Но ведь не исключено, что краю банки отвечает второй нуль функции Бесселя, так что в промежутке от центра банки до ее края происходит одно полное колебание электрического поля (фиг. 23.12, а). Такой тип колебаний полей вполне допустим, и естественно ожидать, что банка начнет резонировать на такой частоте. Но заметьте: второй нуль функции Бесселя наблюдается при x=5,52 (фиг. 23.12,6), т. е. более чем вдвое дальше, чем первый нуль. Значит, резонансная частота колебаний этого типа превышала бы 6000 Мгц. Ее, без сомнения, можно заметить, но это не объясняет нам резонанса при 3300 Мгц.
Все дело в том, что в своем анализе поведения резонансной полости мы рассмотрели лишь одно возможное геометрическое расположение электрических и магнитных полей. Мы считали,
Фиг. 23.11. Наблюдаемые резонансные частоты цилиндрической полости.
Фиг. 23.12. Более высокочастотный тип колебаний.
что электрическое поле вертикально, а магнитное расположено горизонтальными кругами. Но мыслимы и другие поля. От них требуется лишь, чтобы они удовлетворяли уравнениям Максвелла и чтобы электрическое поле входило в стенки под прямым углом к ним. Мы взяли случай, когда верх и низ банки плоские, но все не очень бы изменилось, если бы верх и низ были изогнутыми. Да и вообще, откуда банке «знать», где у нее верх,
где низ, а где бока? И действительно, можно доказать, что существует такой тип колебаний полей внутри банки, при котором электрическое поле идет более или менее вдоль ее диаметра (фиг. 23.13).