Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилиндра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1). Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверждали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низких частотах можно описать, задав ее индуктивность на единицу длины L0 и ее емкость на единицу длины С0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить между собой маленькие элементы индуктивности L0Ax и зашунтировать их маленькими емкостями С0Dx; (где Dx; — элемент длины линии). Применяя к бесконечному фильтру наши прежние результаты, мы бы увидали, что вдоль линии должны распространяться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.
Фие. 24.2. Токи и напряжения в передающей линии.
Предположим, мы наблюдаем за происходящим в двух соседних точках передающей линии, скажем, на расстояниях х и х+Dх от начала линии. Обозначим напряжение между проводниками через V(x), а ток в верхнем проводнике I(х} (фиг. 24.2). Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Dx
Или, беря предел при Dx®0, получаем
(24.1)
Изменение тока приводит к перепаду напряжения.
Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок линии от х до x+Dx, то заряд на нем равен q = C0DxV. Скорость изменения этого заряда равна C0DxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Dх), Обозначая разность через DI,
Если перейти к пределу при Dx®0, получается
(24.2)
Так что сохранение заряда предполагает, что градиент тока пропорционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов через изоляцию между проводниками, но пока нам достаточно самого простого примера.
Оба уравнения передающей линии можно объединить, продифференцировав первое по t, а второе по x; и исключив V или I. Получится либо
(24.3)
либо
(24.4)
Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать закону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что
(24.5)
Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффициент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для волны, бегущей в направлении +x, вы должны будете получить
(24.6)
Равным образом, для волны, бегущей в направлении -х, получится