Начнем с прямоугольной трубы, ее проще всего анализировать. Сперва изложим все математически, а потом еще раз вернемся назад и рассмотрим вопрос более элементарно. Но этот более элементарный подход легко применить лишь к прямоугольным трубам. Основные же явления в любой трубе одни и те же, так что математические доводы звучат более основательно.
Поставим перед собой следующий вопрос: какого типа волны могут существовать в прямоугольной трубе? Выберем сначала удобные оси координат: ось z направим вдоль трубы, а оси х и у — вдоль стенок (фиг. 24.3).
Известно, что когда волны света бегут по трубе, их электрическое поле поперечно; поэтому начнем с поиска таких решений, в которых Е перпендикулярно z, скажем решений с одной только y-компонентой Еy (фиг. 24.4,а). Это электрическое поле должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.
Фиг, 24.3. Выбор осей координат для прямоугольного волновода.
Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической симметрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.
Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между положительными и отрицательными значениями (фиг. 24.5) и что должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.
Фиг. 24.4. Электрическое поле в волноводе при некотором значении z.
Фиг. 24.3. Выбор осей координат для прямоугольного волновода.
Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической симметрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.
Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между положительными и отрицательными значениями (фиг. 24.5) и что
Фиг. 24,4. Электрическое поле в волноводе при некотором значении z.
Фиг. 24.5. Зависимость поля в волноводе от z.
эти колебания будут бежать вдоль трубы с какой-то скоростью v. Если имеются колебания с определенной частотой w, то надо испытать, может ли волна меняться по z как cos(wt—kzz) или, в более удобной математической форме, как еi(wt-k2z). Такая зависимость от z представляет волну, бегущую со скоростью v=w/kz [см. гл. 29 (вып. 3)].
Значит, можно допустить, что волна в трубе имеет следующую математическую форму:
(24.12)
Давайте-ка поглядим, можно ли при таком допущении удовлетворить правильным уравнениям поля. Во-первых, электрическое поле не должно иметь составляющих, касательных к проводнику. Для этого наше поле подходит; вверху и внизу оно направлено поперек стенок, а с боков равно нулю. Впрочем, для последнего необходимо, чтобы полволны sin kxx как раз укладывалось на всей ширине волновода, т. е. чтобы было
(24.13)
Это условие определяет kx. Есть и иные возможности, например kxa=2p, Зp, ... или в общем случае
(24.14)
где n — целое. Все они представляют различные сложные расположения полей, но мы дальше будем говорить о самом простом, когда kx=p/a, a a — внутренняя ширина трубы.
Далее, дивергенция Е в пустом пространстве внутри трубы должна быть равна нулю, потому что в трубе нет зарядов. У нашего Е есть только y-компонента, но по у она не меняется, так что действительно V·Е=0.