Наконец, наше электрическое поле должно согласовываться с остальными уравнениями Максвелла для пустого пространства внутри трубы. Это все равно, что потребовать, чтобы оно удовлетворяло волновому уравнению
(24.15)
Нам надо проверить, подойдет ли сюда выбранная нами форма (24.12). Вторая производная Еy по х просто равна —k2хЕу. Вторая производная по у равна нулю, потому что от у ничего не зависит. Вторая производная по z есть —k2zEy, а вторая производная по t это —w2Еy . Тогда уравнение (24.15) утверждает, что
Если Еy не обращается всюду в нуль (этот случай нас не очень интересует), то это уравнение выполняется всегда, если
(24.16)
Число kx мы уже закрепили, так что это уравнение говорит нам, что волны предположенного нами типа возможны лишь тогда, когда kz связано с частотой w условием (24.16), т. е. когда
(24.17)
Волны, которые мы описали, распространяются в направлении z с таким значением kz.
Волновое число kz, которое мы получили из (24.17), дает нам при данной частоте w скорость, с которой бегут вдоль трубы узлы волны. Фазовая скорость равна
(24.18)
Вспомните теперь, что длина l, бегущей волны дается формулой l=2pv/w, так что kzтакже равняется 2p/lg, где lg— длина волны осцилляции в направлении z — «длина волны в волноводе». Длина волны в волноводе, конечно, отличается от длины электромагнитных волн той же частоты, но в пустом пространстве. Если длину волны в пустом пространстве обозначить l0 (что равно 2pс/w), то (24.17) можно переписать в таком виде:
(24.19)
Фиг. 24.6. Магнитное поле в волноводе.
Кроме электрических полей, существуют и магнитные поля, которые тоже движутся волнообразно. Мы не будем сейчас заниматься выводом выражений для них. Ведь c2СXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt — наибольшее, т. е. на полпути между максимумом и минимумом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).
§ 3. Граничная частота
Уравнение (24.16) для kz на самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:
(24.20)
Смысл этих двух знаков просто в том, что волны в волноводе могут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно могут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.
Наше уравнение для kz сообщает нам также, что высшие частоты приводят к большим значениям kg, т. е. к более коротким волнам, пока в пределе больших w величина k не станет равной w/с — тому значению, которое бывает, когда волна бежит в пустоте. Свет, который мы «видим» сквозь трубу, все еще бежит со скоростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота w станет чересчур малой, то под корнем в (24.20) внезапно появится отрицательное число. Это произойдет, когда w перевалит через pс/а или когда l0 станет больше 2а. Иначе говоря, когда частота становится меньше некоторой критической частоты wc=pс/а, волновое число kz (а также lg) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что kz должно быть действительным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые kz тоже представляют какую-то волну?
Предположим, что w действительно меньше wc; тогда можно написать