(24.21)
где k' — действительное положительное число
(24.22)
Если теперь вернуться к нашей формуле (24.12) для Еy , то надо будет написать
(24.23)
что можно также представить в виде
(24.24)
Это выражение приводит к полю Е, которое во времени колеблется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.
Итак, при частотах ниже wс—pс/а волны вдоль трубы не распространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wс называют «граничной частотой» волновода. Глядя на (24.22), мы видим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоянии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.
Мы хотим еще раз подчеркнуть эту характерную черту нашего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы получаем мнимое число, то это обычно ничего физического не означает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетворяется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн
Фиг. 24.7. Изменение Еy с ростом z при w<<wc.
Итак, если в любой задаче на волны k при какой-то частоте становится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.
§ 4. Скорость волн в волноводе
Та скорость волн, о которой мы пока говорили,— это фазовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать
(24.25)
Для частот выше граничной (для которых бегущая волна существует) wc/w меньше единицы, vфаз— действительное число, большее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерференцией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a dw/dk:
(24.26)
Дифференцируя (24.17) по w и переворачивая, чтобы получить dw/dk, получаем
(24.27)
Это меньше скорости света.
Среднее геометрическое между vфаз и vгр в точности равно с — скорости света:
(24.28)
Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соотношением
(24.29)
Но в квантовой механике энергия — это hw, а импульс —это h/l’, или hk; значит, (24.29) можно записать так:
(24.30)
или
(24.31)
а это очень похоже на (24.17). . . Интересно, не правда ли? Групповая скорость волн — это также скорость, с какой энергия передается по трубе. Если вам нужно найти поток энергии сквозь волновод, надо умножить плотность энергии на групповую скорость. Если среднее квадратичное электрическое поле равно Е0, то средняя плотность электрической энергии равна e0Е20/2. Кроме этого, часть энергии связана с магнитным полем. Мы не будем здесь это доказывать, но в любой полости или трубе магнитная и электрическая энергии равны между собой, так что полная плотность электромагнитной энергии равна e0Е20. А мощность dU/dt, передаваемая волноводом, поэтому равна