Выбрать главу

(24.32)

(Позже мы рассмотрим другой, более общий способ вычисления потока энергии.)

§ 5. Как наблюдать волны в волноводе

Энергию в волновод можно ввести своего рода «антенной», воспользовавшись для этого, например, вертикальной прово­лочкой, или «штырем». В наличии волн в волноводе можно убедиться, отведя из него часть электромагнитной энергии с помо­щью приемной «антенки» — тоже какого-нибудь проволочного штыря или петельки. На фиг. 24.8 показан волновод, часть сте­нок на рисунке выхвачена, чтобы были видны входной штырь и приемный «пробник».

Фиг. 24.8. Волновод с входным штырем и пробником.

Входной штырь можно подключить через коаксиальный кабель к генератору сигналов, а приемный проб­ник таким же кабелем можно соединить с детектором. Обычно удобнее вводить пробник через длинную прорезь в стенке волно­вода. Тогда можно им водить вдоль волновода и замерять поле в разных местах.

Если подать с сигнал-генератора частоту w, большую, чем граничная частота wс, то по волноводу от штыря побегут волны. Если волновод бесконечной длины, то никаких волн, кроме этих, не будет (чтобы сделать его бесконечным, надо на конце его поставить тщательно сконструированный поглотитель, который не допустит отражения от этого конца). Тогда поскольку детектор измеряет поле близ пробника, усредненное по вре­мени, то он будет воспринимать сигнал, не зависящий от поло­жения в волноводе; на выходе будет регистрироваться величина, пропорциональная передаваемой мощности.

Если же сделать так, чтобы от дальнего конца волновода от­ражалась волна (предельный случай: если закрыть его металли­ческой пластинкой), то вдобавок к первоначальной волне по­явится отраженная. Эти две волны будут интерферировать и создадут в волноводе стоячую волну, похожую на стоячие волны в струне, о которых говорилось в гл. 49 (вып. 4). В этом случае, по мере того как пробник передвигается вдоль трубы, отсчеты детектора будут периодически повышаться и падать; максимум поля будет отмечать подъемы волны, а минимум — узлы. Рас­стояние между двумя последовательными узлами (или гребнями) равно lg/2. Это дает нам удобный способ измерять длину волны в волноводе. Если сдвигать частоту ближе к wс, то расстоя­ние между узлами увеличится, показывая тем самым, что длина волны в волноводе изменяется по закону (24.19).

Пусть теперь наш сигнал-генератор включен на частоту, чуть-чуть меньшую, чем wс. Тогда показания детектора будут постепенно падать по мере того, как пробник удаляется вдоль волновода. Если еще понизить частоту, напряженность поля начнет убывать быстрее, следуя кривой фиг. 24.7 и показывая, что волны не распространяются.

§ 6. Сочленение волноводов

Важное практическое применение волноводов состоит в пере­даче высокочастотной мощности. Ими, например, соединяют высокочастотный осциллятор или выходной усилитель радио­локатора с антенной. Сама же антенна обычно состоит из пара­болического рефлектора, в фокус которого подается энергия от волновода, расширяющегося на конце в виде «рога», который излучает волны, приходящие по волноводу. Хотя высокую ча­стоту можно передавать и по коаксиальному кабелю, волновод все же лучше — по нему можно передавать большую мощность. Во-первых, передаваемая по кабелю мощность ограничена опас­ностью пробоя изоляции (твердой или газообразной) между проводниками. Напряженности полей в волноводе при данной мощности обычно не столь велики, как в кабеле, так что можно передавать большие мощности, не опасаясь пробоя. Во-вторых, потери мощности в коаксиальном кабеле обычно больше, чем в волноводе. В кабель приходится ставить изоляционный мате­риал, чтобы поддержать внутренний проводник, и в этом мате­риале возникают потери энергии, особенно при высоких часто­тах. Кроме того, плотности тока во внутреннем проводе весьма высоки, а поскольку потери пропорциональны квадрату плот­ности тока, то чем слабее ток в стенках волновода, тем меньше потери энергии. Чтобы свести эти потери к минимуму, внутрен­нюю поверхность волновода часто покрывают хорошо проводя­щим материалом, скажем серебром.