Выбрать главу

Тогда угол q дается условием

(24.33)

Имеется, конечно, и другая совокупность волн, бегущих вниз под симметричным углом по отношению к линии источников. А полное поле в волноводе (не слишком близко к источнику) является суперпозицией этих двух совокупностей волн (фиг. 24.17). Конечно, в действительности картина истинных полей совпадает с изображенной лишь в пространстве между стенками волновода.

В таких точках, как А к С, гребни двух волновых картин совпадут, и у поля будет максимум; в точках же наподобие В пики обеих волн направлены в отрицательную сторону, и поле обладает минимумом (наименьшим отрицательным значением). С течением времени поле в волноводе будет двигаться вдоль него. Длина волны будет равна lg расстоянию от A go С. Она свя­зана с q формулой

(24.34)

Подставляя (24.33) вместо q, получаем

(24.35)

что в точности совпадает с (24.19).

Теперь нам становится понятно, почему волны распростра­няются только выше граничной частоты wс. Если длина волн в пустом пространстве больше 2а, то не существует угла, под которым может появиться волна, показанная на фиг. 24.16. Необходимая для этого конструктивная интерференция возни­кает внезапно, едва X0 оказывается меньше 2а, или, что то же самое, когда w0=pс/а.

А если частота достаточно высока, то может появиться два

или больше возможных направления распространения волн.

2 В нашем случае это произойдет при l0 <2/3 а. Но вообще-то это может происходить и при l0<а. Эти добавочные волны отве­чают высшим типам волн, о которых мы говорили.

После нашего анализа становится также ясно, отчего фазо­вая скорость волн, бегущих по трубе, превышает с и зависит от со. Когда w меняется, меняется и угол на фиг. 24.16, под ко­торым в пустом пространстве распространяются волны, а вместе с этим меняется и скорость вдоль трубы.

Хотя мы описали волны в волноводе в виде суперпозиции по­лей бесконечной совокупности линейных источников, но можно убедиться в том, что тот же результат можно было бы получить, представив себе две совокупности волн в пустом пространстве, многократно отражаемых от двух идеальных зеркал вперед и назад, и вспоминая, что подобное отражение означает перемену знака фазы. Эти совокупности отражаемых волн гасили бы друг друга под всеми углами, кроме угла q [см. (24.33)]. Одну и ту же вещь можно рассматривать многими способами.

Глава 25

ЭЛЕКТРОДИНАМИКА

В РЕЛЯТИВИСТСКИХ ОБОЗНАЧЕНИЯХ

§ 1. Четырехвекторы

§ 2. Скалярное произведение

§ 3. Четырехмерный градиент

§ 4. Электродинамика в четырехмерных обозначениях

§ 5. Четырехмерный потенциал движущегося заряда

§ 6. Инвариантность уравнений электродинамики

В этой главе с=1

Повторить: гл. 15 (вып. 2) «Специ­альная теория от­носительности» ; гл. 16 (вып. 2) «Релятивистская энергия и им­пульс»;

гл. 17 (вып. 2} «Пространство - время»; гл. 13 (вып. 5) «Магнитостатика»

§ 1. Четырехвекторы

В этой главе мы рассмотрим применение спе­циальной теории относительности к электроди­намике. Мы изучали теорию относительности довольно давно (гл. 15—17, вып. 2), поэтому я здесь коротко напомню основные идеи.

Экспериментально установлено, что законы физики при равномерном движении не изме­няются. Если вы находитесь внутри звездо­лета, летящего с постоянной скоростью по пря­мой линии, то не можете установить самого фак­та движения корабля: для этого надо выглянуть наружу или по крайней мере провести какие-то наблюдения, связанные с внешним миром. Лю­бой написанный нами истинный закон физики должен быть сформулирован так, чтобы этот факт природы был «встроен» в него.

Соотношение между пространством и време­нем в двух системах координат (одна из которых 6" равномерно движется относительно другой 5 в направлении оси х со скоростью v) опреде­ляется преобразованиями Лоренца