Мы уже сталкивались с одним таким четырехвектором, состоящим из энергии и импульса частицы (см. гл. 17, вып. 2). В наших новых обозначениях он запишется так:
pm=(Е, p), (25.2)
т. е. четырехвектор pm состоит из энергии Е и трех компонент трехмерного импульса частицы р.
Похоже, что игра действительно оказывается нехитрой: единственное, что мы должны сделать,— это найти для каждого трехмерного вектора недостающую компоненту и получить четырехвектор. Однако все же эта задача потруднее, чем кажется на первый взгляд. Возьмем, например, вектор скорости с компонентами
Что будет его временной компонентой? Инстинкт подсказывает нам, что поскольку четырехвектор подобен t, x, у, z, то временной компонентой как будто должно быть
Но это неверно. Дело в том, что время t в каждом знаменателе не инвариантно при преобразованиях Лоренца. Числитель имеет правильное поведение, a dt в знаменателе портит все дело: оно не одинаково в двух различных системах.
Оказывается, что четыре компоненты «скорости», которые нам нужно выписать, превратятся в компоненты четырехвектора, если мы попросту поделим их на Ц(1-v2). В правильности этого можно убедиться, взяв
четырехвектор импульса
(25.3)
и поделив его на массу покоя, которая в четырехмерном пространстве является скаляром. Мы получим при этом
(25.4)
что по-прежнему должно быть четырехвектором. (Деление на скаляр не изменяет трансформационных свойств.) Так что четырехвектор скорости vm можно определить так:
(25.5)
Это очень полезная величина; мы можем теперь написать, например,
(25.6)
Таков типичный вид, который должен иметь правильное релятивистское уравнение: каждая сторона его должна быть четырехвектором. (В правой части стоит произведение инварианта на четырехвектор, которое по-прежнему есть четырехвектор.)
§ 2. Скалярное произведение
То, что расстояние от некоторой точки до начала координат не изменяется при повороте, если хотите,— счастливая случайность. Математически это означает, что r2=x2+y2+z2 является инвариантом. Другими словами, после поворота r'2=r2 или
Возникает вопрос: существует ли подобная величина, которая инвариантна при преобразованиях Лоренца? Да, существует. Из (25.1) вы видите, что
Она была бы всем хороша, если бы только не зависела от нашего выбора оси х. Но этот недостаток легко исправить вычитанием y/2 и z2. Тогда преобразование Лоренца плюс вращение оставляют ее неизменной. Таким образом, роль величины, аналогичной трехмерному r2 в четырехмерном пространстве, играет комбинация
Она является инвариантом так называемой «полной группы Лоренца», которая включает как перемещения с постоянной скоростью, так и повороты.
Далее, поскольку эта инвариантность представляет собой алгебраическое свойство, зависящее только от правил преобразования (25.1) плюс вращение, то она справедлива для любого четырехвектора. (Все они, по определению, преобразуются одинаковым образом.) Так что для любого четырехвектора аm
Эту величину мы будем называть квадратом «длины» четырехвектора ам. (Будьте внимательны! Иногда берут обратные знаки у всех слагаемых и квадратом длины называют число a2x+a2y+a2z -a2t)
Если теперь у нас есть два вектора аm и bm, то их одноименные компоненты преобразуются одинаково, поэтому комбинация