есть четырехвектор. То, что мы называли скалярным и векторным потенциалами, оказывается только разными частями от одной и той же физической величины. Они неотделимы друг от друга. А если это так, то релятивистская инвариантность мира очевидна. Вектор Аm мы называем четырехмерным потенциалом (4-потенциалом).
В четырехмерных обозначениях (25.21) приобретает очень простой вид:
(25.22)
Физика этого уравнения та же, что и уравнений Максвелла. Но есть своя прелесть в том, что можно переписывать их в столь элегантной форме. Впрочем, эта красивая форма содержит и кое-что более значительное — из нее непосредственно видна инвариантность электродинамики относительно преобразований Лоренца.
Напомним, что уравнение (25.21) можно получить из уравнений Максвелла только тогда, когда наложено дополнительное условие градиентной инвариантности:
(25.23)
что означает просто СmAm =0, т. е. условие градиентной инвариантности говорит, что дивергенция четырехмерного вектора Аm равна нулю. Это требование носит название условия Лоренца. Такая форма его записи очень удобна, ибо она инвариантна, а поэтому уравнения Максвелла во всех системах отсчета сохраняют вид (25.22).
§ 5. Четырехмерный потенциал движущегося заряда
Теперь выпишем законы преобразования, выражающие j и А в движущейся системе через j и А в неподвижной, хотя неявно мы уже говорили о них. Поскольку Аm = (j, А) является четырехвектором, это уравнение должно выглядеть подобно (25.1), за исключением того, что t нужно заменить на j, а x — на А. Таким образом,
(25.24)
При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.
Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с зарядом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.
Фиг. 23.2. Система отсчета S' движется со скоростью v (в направлении оси х) по отношению к системе S.
Заряд, покоящийся в начале системы координат S', находится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.
Скалярный потенциал в движущейся системе задается выражением
(25.25)
причем r' — расстояние от заряда q до точки в движущейся системе, где производится измерение поля. Векторный же потенциал А', разумеется, равен нулю.
Теперь без особых хитростей можно найти потенциалы j и А в неподвижной системе координат. Соотношениями, обратными к уравнениям (25.24), будут
(25.26)
Используя далее выражение для j'[см. (25.25)] и равенство А'=0, получаем
Эта формула дает нам скалярный потенциал j, который мы увидели бы в системе S, но он, к сожалению, записан через координаты штрихованной системы. Впрочем, это дело легко поправимо; с помощью (25.1) можно выразить t', х', у', z' через t, x, у, z и получить
(25.27)
Повторяя ту же процедуру для вектора А, вы можете показать,
что
А = vj. (25.28)
Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.
§ 6. Инвариантность уравнений электродинамики
Итак, потенциалы j.и А, оказывается, образуют в совокупности четырехвектор, который мы обозначили через Аm , а волновое уравнение (полное уравнение, выражающее Аm через jm) можно записать в виде (25.22). Это уравнение вместе с сохранением заряда (25.19) составляют фундаментальный закон электромагнитного поля: