(25.29)
И вот, пожалуйста, все уравнения Максвелла просто и красиво записываются всего в одной строке. Достигли ли мы чего-нибудь, записав их в таком виде, кроме, разумеется, красоты и простоты? Прежде всего, есть ли здесь какое-нибудь отличие от того, что было раньше, когда мы выписывали их во всем разнообразии компонент? Можно ли из этих уравнений получить нечто, чего нельзя получить из волновых уравнений для потенциалов, содержащих заряды и токи? Ответ вполне определенный — конечно, нельзя. Единственное, что мы сделали — это изменили названия, т. е. использовали новые обозначения. Мы нарисовали квадратик для обозначения производных, но это по-прежнему не более и не менее как вторая производная по t минус вторая производная по х, минус вторая производная по у, минус вторая производная по z. А значок m, говорит, что у нас есть четыре уравнения, по одному для каждого из значений m=t, х, у или z. Какой же тогда смысл того, что уравнения можно записать в столь простой форме? С точки зрения получения чего-то нового — никакого. Хотя, возможно, простота уравнений и выражает определенную простоту природы. Сейчас я покажу вам нечто интересное, чему мы понемногу научились. Можно сказать, что все законы физики описываются
одним уравнением:
U=0. (25.30)
Не правда ли, удивительно простое уравнение! Конечно, нужно еще знать, что обозначает символ U. Это физическая величина, которую мы будем называть «несообразностью» ситуации. У нас даже есть для нее формула. Вот как вычисляется эта несообразность: вы берете все физические законы и записываете их в особой форме. Например, вы взяли закон механики F=ma и записали его в виде F-ma=0.
Теперь вы можете величину (F-mа), которая, разумеется, в нашем мире должна быть нулем, назвать «несообразностью» механики. Затем вы берете квадрат этой несообразности, обозначаете его через U1 и называете ее «механической несообразностью». Другими словами, вы берете
(25.31)
который можно назвать «гауссовой электрической несообразностью». Продолжая этот процесс, вы можете ввести U3, U4 и т. д. для каждого из физических законов.
Наконец, полной несообразностью мира U вы называете сумму Ui,- для каждого из различных явлений, т. е. U=2Ui .
И тогда «великий закон природы» гласит:
(25.32)
Этот «закон», разумеется, утверждает лишь, что сумма квадратов всех отдельных отклонений равна нулю, однако единственный способ сделать сумму квадратов множества членов равной нулю — это приравнять нулю каждое из ее слагаемых.
Таким образом, «удивительно простой закон» (25.32) эквивалентен целому ряду уравнений, которые вы писали первоначально. Поэтому совершенно очевидно, что простые обозначения, скрывающие сложности за определением символов,— это еще не истинная простота. Это только трюк. Так и в выражении (25.32) за кажущейся простотой скрывается несколько уравнений; это снова не более чем трюк. Развернув их, вы снова получите то, что было раньше.
Однако закон электродинамики, написанный в форме уравнения (25.29), содержит нечто большее, чем простую запись; в векторном анализе, кроме простоты записи, также есть нечто большее. Тот факт, что уравнения электромагнетизма можно записать в особых обозначениях, которые специально приспособлены для четырехмерной геометрии преобразований Лоренца, иначе говоря, как векторные уравнения в четырехмерном мире, означает, что они инвариантны относительно преобразований Лоренца. Именно потому, что уравнения Максвелла инвариантны относительно этих преобразований, их можно записать в столь красивом виде.
В том, что законы электродинамики можно записать в форме элегантного уравнения (25.29), нет ничего случайного. Теория относительности была развита именно потому, что экспериментально подтвердилась неизменность предсказанных уравнением Максвелла явлений в любой инерциальной системе. Именно при изучении трансформационных свойств уравнений Максвелла Лоренц открыл свои преобразования как преобразования, оставляющие инвариантными эти уравнения.
Однако есть и другая причина записывать уравнения в таком виде. Было обнаружено, что все законы физики должны быть инвариантными относительно преобразований Лоренца (первый об этом догадался Эйнштейн). Таково содержание принципа относительности. Поэтому если вы изобрели обозначения, которые сразу же показывают, инвариантен ли выписанный нами закон, то можно гарантировать, что при попытке создать новую теорию вы будете писать только уравнения, согласующиеся с принципом относительности.