В простоте уравнений Максвелла в этих частных обозначениях никакого чуда нет. Обозначения специально были придуманы именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в b-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относительности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.
*Вас может удивить, почему же мы не пользуемся реакцией
Или даже
для которой, несомненно, требуется меньшая энергия? Все дело в принципе, называемом сохранением барионного заряда, согласно которому величина, равная числу протонов минус число антипротонов, не может измениться. В левой стороне нашей реакции эта величина равна 2. Следовательно, если мы хотим справа иметь антипротон, то ему должны сопутствовать еще три протона (или других бариона).
* В английском оригинале «unworldliness». — Прим. ред.
Глава 26
ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
§ 1. Четырехмерный потенциал движущегося заряда
§ 2. Поля точечного заряда, движущегося с постоянной скоростью
§ 3. Релятивистское преобразование полей
§ 4. Уравнение движения в релятивистских обозначениях
В этой главе c=1
Повторить: гл. 20 «Решение уравнений Максвелла в пустом пространстве»
§ 1. Четырехмерный потенциал движущегося заряда
В предыдущей главе мы видели, что потенциал Am =(j, А) является четырехвектором. Его временной компонентой служит скалярный потенциал j, а тремя пространственными компонентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в момент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид
(26.1)
Уравнения (26.1) дают потенциалы в точке х, у, z в момент t, возникающие от движущегося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются координатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время».)
Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P’ (т. е. положение в момент t’=t-r’/c).