Выбрать главу

В простоте уравнений Максвелла в этих частных обозначе­ниях никакого чуда нет. Обозначения специально были приду­маны именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в b-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относитель­ности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.

*Вас может удивить, почему же мы не пользуемся реакцией

Или даже

для которой, несомненно, требуется меньшая энергия? Все дело в прин­ципе, называемом сохранением барионного заряда, согласно которому вели­чина, равная числу протонов минус число антипротонов, не может изме­ниться. В левой стороне нашей реакции эта величина равна 2. Следова­тельно, если мы хотим справа иметь антипротон, то ему должны сопут­ствовать еще три протона (или других бариона).

* В английском оригинале «unworldliness». Прим. ред.

Глава 26

ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ

§ 1. Четырехмерный потенциал дви­жущегося заряда

§ 2. Поля точечного заряда, движу­щегося с посто­янной скоростью

§ 3. Релятивистское преобразование полей

§ 4. Уравнение движения в релятивистских обозначениях

В этой главе c=1

Повторить: гл. 20 «Решение урав­нений Максвелла в пустом пространстве»

§ 1. Четырехмерный потенциал движущегося заряда

В предыдущей главе мы видели, что потен­циал Am =(j, А) является четырехвектором. Его временной компонентой служит скалярный по­тенциал j, а тремя пространственными компо­нентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в мо­мент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид

(26.1)

Уравнения (26.1) дают потенциалы в точке х, у, z в момент t, возникающие от движуще­гося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются коор­динатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время».)

Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P’ (т. е. положение в момент t’=t-r’/c).