Выбрать главу

Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потен­циалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым обра­зом. Вот как все это работает. Пусть у вас имеется заряд, дви­жущийся каким-то произвольным образом, скажем, по траекто­рии, изображенной на фиг. 26.2, и вы пытаетесь найти потен­циал в точке (х, у, z). Прежде всего вы находите запаздывающее положение Р' и скорость v' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображае­мом положении Рпр, которое мы будем называть «проекци­онным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент t он находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, кото­рые дали бы уравнения (26.1) для воображаемого заряда в про­екционном положении Рпр. Мы хотим здесь сказать, что, по­скольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоро­стью или изменяет его после момента t', т. е. после того, как по­тенциалы, которые возникнут в момент t в точке (х, у, z), уже определены.

Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпози­ции мы можем получить потенциалы для любого распределения зарядов.

Фиг. 26.2. Движение за­ряда по произвольной тра­ектории.

Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v' в за­паздывающий момент t'— t-r' /с. Их удобно выражать через коор­динаты относительно «проек­ционного» положения Pпр (ис­тинным положением в момент t является точка Р).

Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очу­титесь на необитаемом острове. Исходя из них, можно восста­новить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)

Во-первых, Аmчетырехвектор. Во-вторых, кулонов по­тенциал любого покоящегося заряда равен q/4pe0r. В-тре­тьих, потенциал, созданный зарядом, движущимся произволь­ным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что Аm ~ четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал за­ряда, движущегося с постоянной скоростью. Затем из послед­него утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положе­ние, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.

Иногда кое-кто безответственно заявляет, что вся электро­динамика может быть получена только из преобразований Ло­ренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скаляр­ный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потен­циалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, по­чему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поля Е и В зависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они за­висят только от положения и скорости в запаздывающий мо­мент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траек­тории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, " если посмотреть внимательнее.)