Выбрать главу

Но вспомните, ведь At=j, поэтому предыдущее выражение равно

Такое выражение нам уже встречалось раньше. Это почти z-компонента поля Е. Почти, за исключением неверного знака. Впрочем, мы забыли, что в четырехмерном градиенте произ­водная по t идет со знаком, противоположным производным по х, у и z. Так что на самом деле нам следует взять более умное обобщение, т. е. считать

(26.17)

Теперь она в точности равна — Ег. Так же можно построить Ftx и Ftv и получить три выражения:

А что, если оба индекса внизу будут t? Или оба будут х? Тогда мы получим выражения типа

т. е. просто нуль.

Итак, у нас есть шесть таких «F-штук». Кроме них, есть еще шесть полученных перестановкой индексов, но они не дают ни­чего нового, ибо

Fxy= -Fyx

и т. п. Таким образом, из шести возможных попарных комбина­ций четырех значений индексов мы получили шесть различных физических объектов, которые представляют компоненты В и Е.

Чтобы записать члены F в общем виде, мы воспользуемся обобщенными индексами m и v, каждый из которых может быть 0, 1, 2 или 3, обозначающих соответственно (как и в обычных четырехвекторах) t, x, у или z. Кроме того, все будет прекрасно согласовываться с нашими четырехмерными обозначениями, если Fmv определить как

FmvmAvvAm, (26.19)

помня при этом, что

То, что мы нашли, можно сформулировать так: в природе су­ществуют шесть величин, которые представляют различные сто­роны чего-то одного. Электрическое и магнитное поля, кото­рые в нашем обычном медленно движущемся мире (где нас не беспокоит конечность скорости света) рассматривались как со­вершенно отдельные векторы, в четырехмерном пространстве уже не будут ими. Они — часть некоторой новой «штуки».

Наше физическое «поле» на самом деле шестикомпонентный объект Fmv . Вот как обстоит дело в теории относительности. По­лученные результаты для Fmv собраны в табл. 26.1.

Таблица 26.1 · компоненты fmv

Вы видите, что мы сделали фактически обобщение векторного произведения. Мы начали с ротора и с того факта, что его свой­ства преобразования в точности такие же, как свойства преобра­зования двух векторов — обычного трехмерного вектора А и оператора градиента, который, как нам известно, ведет себя подобно вектору. Возвратимся на минуту к обычному вектор­ному произведению в трехмерном пространстве, например к мо­менту количества движения частицы. При движении частицы в плоскости важной характеристикой оказывается комбина­ция (xvyyvx), а при движении в трехмерном пространстве появляются три подобные величины, которые мы назвали мо­ментом количества движения:

Затем (хотя сейчас вы, может быть, об этом и забыли) мы сотво­рили в гл. 20 (вып. 2) чудо: эти три величины превратились в компоненты вектора. Чтобы сделать это, мы приняли искус­ственное соглашение: правило правой руки. Нам просто повезло. И повезло потому, что момент Ltj (i и j равны х, у или z) ока­зался антисимметричным объектом, т. е.

Lij= - Lji , Lii=0.

Из девяти возможных его величин независимы лишь три. И вот оказалось, что при изменении системы координат эти три опе­ратора преобразуются в точности, как компоненты вектора.